Skip to main content
Log in

Modeling underwater transport of oil spilled from deepwater area in the South China Sea

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Based on a Lagrangian integral technique and Lagrangian particle-tracking technique, a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil, while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further, it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Rabeh A H, Cekirge H M, Gunay N. 1989. A stochastic simulation model of oil spill fate and transport. Appl. Math. Model., 13 (6): 322–329.

    Article  Google Scholar 

  • Bandara U C, Yapa P D. 2011. Bubble sizes, breakup and coalescence in deepwater gas/oil plumes. J. Hy d raul. Eng., 137 (7): 729–738.

    Article  Google Scholar 

  • Bemporad G A. 1994. Simulation of round buoyant jet in stratified flowing environment. J. Hy d raul. Eng., 120 (5): 529–543.

    Article  Google Scholar 

  • Bennett J R, Clites A H. 1987. Accuracy of trajectory calculation in a finite-difference circulation model. J. Comput. Phys., 68 (2): 272–282.

    Article  Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H. 2006. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys., 44 (2): RG2003, http://dx.doi.org/10.1029/2005RG000178.

    Article  Google Scholar 

  • Bobra M A, Chung P T. 1986. A Catalogue of Oil Properties. Consultchem, Ottawa, Canada.

    Google Scholar 

  • Boufadel M C, Abdollahi-Nasab A, Geng X L, Galt J, Torlapati J. 2014. Simulation of the Landfall of the deepwater horizon oil on the shorelines of the gulf of Mexico. Environ. Sci. Technol., 48 (16): 9 496–9 505.

    Article  Google Scholar 

  • Brandvik P J, Johansen Ø, Leirvik F, Farooq U, Daling P S. 2013. Droplet breakup in subsurface oil releases—Part 1: experimental study of droplet breakup and effectiveness of dispersant injection. Mar. Pollut. Bull., 73 (1): 319–326.

    Article  Google Scholar 

  • Chen F H, Yapa P D. 2003. A model for simulating deep water oil and gas blowouts—Part II: comparison of numerical simulations with “Deepspill” field experiments. J. Hydraul. Res., 41 (4): 353–365.

    Article  Google Scholar 

  • Chen F H, Yapa P D. 2004. Modeling gas separation from a bent deepwater oil and gas jet/plume. J. Marine Syst., 45 (3-4): 189–203.

    Article  Google Scholar 

  • Chen F H, Yapa P D. 2007. Estimating the oil droplet size distributions in deepwater oil spills. J. Hygraul. Eng., 133 (2): 197–207.

    Article  Google Scholar 

  • Cohen Y, Mackay D, Shiu W Y. 1980. Mass transfer rates between oil slicks and water. Can. J. Chem. Eng., 58 (5): 569–575.

    Article  Google Scholar 

  • Csanady G T. 1973. Turbulent Diffusion in the Environment. Springer Science, Dordrecht, Boston.

    Book  Google Scholar 

  • Dasanayaka L K, Yapa P D. 2009. Role of plume dynamics phase in a deepwater oil and gas release model. J. Hydro-Environ. Res., 2 (4): 243–253.

    Article  Google Scholar 

  • Delvigne G A L, Sweeney C E. 1989. Natural dispersion of oil. Oil Chem. Pollut., 4 (4): 281–310.

    Article  Google Scholar 

  • Delvigne G A L. 1994. Natural and chemical dispersion of oil. J. Adv. Mar. Tech. Conf., 11: 23–40.

    Google Scholar 

  • Doneker R L, Jirka G H. 1990. Expert system for hydrodynamic mixing zone analysis of conventional and toxic submerged single port discharges (CORMIX1). Technical Report EPA/600/3-90/012, U.S. EPA Environmental Research Laboratory, Athens, Ga.

    Google Scholar 

  • Elliott A J. 1986. Shear diffusion and the spread of oil in the surface layers of the North Sea. D eu tsch. Hydrogr. Z., 39 (3): 113–137.

    Article  Google Scholar 

  • Fanneløp T K, Sjøen K. 1980. Hydrodynamics of underwater blowouts. Norweg. Marit. Res., 4: 7–33.

    Google Scholar 

  • Fischer H B, List J E, Koh R C, Imberger J, Brooks N H. 1979. Mixing in Inland and Coastal Waters. Academic Press, New York.

    Google Scholar 

  • Frick W E. 1984. Non-empirical closure of the plume equations. Atmos. Environ., 18 (4): 653–662.

    Article  Google Scholar 

  • Gomez S, Ivorra B, Ramos A M. 2011. Optimization of a pumping ship trajectory to clean oil contamination in the open sea. Math. Comput. Model., 54 (1-2): 477–489.

    Article  Google Scholar 

  • Guo W J, Wang Y X. 2009. A numerical oil spill model based on a hybrid method. Mar. Pollut. Bull., 58 (5): 726–734.

    Article  Google Scholar 

  • Hirst E. 1971. Buoyant jets discharged to quiescent stratified ambient. J. Geophys. Res., 76 (30): 7 375–7 384.

    Article  Google Scholar 

  • Hirst E. 1972. Buoyant jets with three-dimensional trajectories. J. Hydraul. Div., 98 (11): 1 999–2 014.

    Google Scholar 

  • Huang J C, Monastero F C. 1982. Review of the state-of-theart of oil spill simulation models. Final Report Submitted to the American Petroleum Institute, Raytheon Ocean Systems Company, East Providence, RI.

    Google Scholar 

  • Hunter J R. 1987. The application of Lagrangian particletracking technique to modelling of dispersant in the sea. In: Noye J ed. Numerical Modelling: Application to Marine Systems. North-Holland.

    Google Scholar 

  • Jamaluddin A K M, Kalogerakis N, Bishnoi P R. 1991. Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions. J. Petrol. Sci. Eng., 5 (4): 323–335.

    Article  Google Scholar 

  • Johansen Ø, Brandvik P J, Farooq U. 2013. Droplet breakup in subsea oil releases—Part 2: predictions of droplet size distributions with and without injection of chemical dispersants. Mar. Pollut. Bull., 73 (1): 327–335.

    Article  Google Scholar 

  • Johansen Ø, Rye H, Cooper C. 2003. DeepSpill-field study of a simulated oil and gas blowout in deep water. Spill Sci. Technol. B ull., 8 (5-6): 433–443.

    Article  Google Scholar 

  • Johansen Ø, Rye H, Melbye A, Jensen H, Serigstad B, Knutsen T. 2001. Deep Spill JIP Experimental Discharges of Gas and Oil at Helland Hansen, Parts I, II, and III -Technical report. SINTEF Applied Chemistry, Norway.

    Google Scholar 

  • Johansen Ø. 1984. The Halten Bank experiment-observations and model studies of drift and fate of oil in the marine environment. In: Proceedings of the 11th Arctic Marine Oil Spill Program (AMOP) Technical Seminar. Environment Canada, Edmonton, Alberta, Canada. p.18–36.

    Google Scholar 

  • Johansen Ø. 2000. DeepBlow -a Lagrangian plume model for deep water blowouts. Spill Sci. Technol. B ull., 6 (2): 103–111.

    Article  Google Scholar 

  • Johansen Ø. 2003. Development and verification of deepwater blowout models. Mar. Pollut. Bull., 47 (9-12): 360–368.

    Article  Google Scholar 

  • Lee J H W, Cheung V. 1990. Generalized Lagrangian model for buoyant jets in current. J. Environ. Eng., 116 (6): 1 085–1 106.

    Article  Google Scholar 

  • Li Y, Zhu J, Wang H. 2013. The impact of different vertical diffusion schemes in a three-dimensional oil spill model in the Bohai Sea. Adv. Atmos. Sci., 30 (6): 1 569–1 586.

    Article  Google Scholar 

  • Lonin S A. 1999. Lagrangian model for oil spill diffusion at sea. Spill Sci. Technol. B ull., 5 (5-6): 331–336.

    Article  Google Scholar 

  • Masutani M S, Adams E E. 2001. Experimental study of multiphase plumes with application to deep ocean oil spills. Technical report, Hawaii Natural Energy Institute, University of Hawaii, Honolulu.

    Google Scholar 

  • Mcdougall T J. 1978. Bubble plumes in stratified environments. J. Fluid Mech., 85 (4): 655–672.

    Article  Google Scholar 

  • Pierson G, Neumann W J Jr. 1966. Principles of Physical Oceanography. Prentice-Hall, Inc., Englewood Cliffs N J.

    Google Scholar 

  • Rye H, Brandvik P J, Reed M. 1996. Subsurface oil release field experiment-observations and modelling of subsurface plume behavior. In: Proceedings of the 19th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Vol. 2. Environment Canada, Ottawa. p.1 417–1 435.

    Google Scholar 

  • Rye H, Brandvik P J. 1997. Verification of subsurface oil spill models. In: International Oil Spill Conference Proceedings: April 1997. Environment Canada, Ottawa, 1997 (1): 551–577.

    Article  Google Scholar 

  • Rye H. 1994. Model for calculation of underwater blow-out plume. In: Proceedings of the Seventeenth Arctic and Marine Oil Spill Program (AMOP), Technical Seminar. Environment Canada, Ottawa. p.849–865.

    Google Scholar 

  • Schatzmann M. 1979. Calculation of submerged thermal plumes discharged into air and water flows. In: Proc. 18th IAHR Congress. Int. Assoc. for Hydr. Res., Delft, The Netherlands, 4: 379–385.

    Google Scholar 

  • Schatzmann M. 1981. Mathematical modelling of submerged discharges into coastal waters. In: Proc. 19th IAHR Congress. Int. Assoc. for Hydr. Res., Delft, The Netherlands, 3: 239–246.

    Google Scholar 

  • Shen H T, Yapa P D, Petroski M E. 1986. Simulation of oil slick transport in Great Lakes connecting channels. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY.

    Google Scholar 

  • Socolofsky S A, Adams E E, Sherwood C R. 2011. Formation dynamics of subsurface hydrocarbon intrusions following the deepwater Horizon blowout. Geophys. Res. Lett., 38 (9): L09602, http://dx.doi.org/10.1029/2011GL047174.

    Article  Google Scholar 

  • Topham D R. 1975. Hydrodynamics of an oilwell blowout. In: Beaufort Sea Technical Report no.33. Department of the Environment

    Google Scholar 

  • Victoria, B. C. Wang C H, Li X Y, Lv X Q. 2013. Numerical study on initial field of pollution in the Bohai Sea with an adjoint method. Math. Probl. Eng., 2013, Article ID 104591, 10p.

    Google Scholar 

  • Wang S D, Shen Y M, Guo Y K, Tang J. 2008. Threedimensional numerical simulation for transport of oil spills in seas. Ocean Eng., 35 (5-6): 503–510.

    Article  Google Scholar 

  • Yapa P D, Wimalaratne M R, Dissanayake A L, DeGraff J A Jr. 2012. How does oil and gas behave when released in deepwater? J. Hydro-Environ. Res., 6 (4): 275–285.

    Article  Google Scholar 

  • Yapa P D, Zheng L, Nakata K. 1999. Modeling underwater oil/ gas jets and plumes. J. Hygraul. Eng., 125 (5): 481–491.

    Article  Google Scholar 

  • Yapa P D, Zheng L. 1997. Simulation of oil spills from under water accidents I: model development. J. Hydraul. Res., 35 (5): 673–688.

    Article  Google Scholar 

  • Zhao L, Boufadel M C, Socolofsky S A, Adams E, King T, Lee K. 2014a. Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar. Pollut. Bull., 83 (1): 58–69.

  • Zhao L, Torlapati J, Boufadel M C, King T, Robinson B, Lee K. 2014b. VDROP: a comprehensive model for droplet formation of oils and gases in liquids -Incorporation of the interfacial tension and droplet viscosity. Chem. Eng. J., 253: 93–106.

    Article  Google Scholar 

  • Zheng L, Yapa P D, Chen F H. 2003. A model for simulating deepwater oil and gas blowouts -Part I: theory and model formulation. J. Hydraul. Res., 41 (4): 339–351.

    Article  Google Scholar 

  • Zheng L, Yapa P D. 1998. Simulation of oil spills from underwater accidents II: model verification. J. Hydraul. Res., 36 (1): 117–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Chen  (陈海波).

Additional information

Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water” (No. CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., An, W., You, Y. et al. Modeling underwater transport of oil spilled from deepwater area in the South China Sea. Chin. J. Ocean. Limnol. 34, 245–263 (2016). https://doi.org/10.1007/s00343-015-4230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4230-7

Keywords

Navigation