Skip to main content

Advertisement

Log in

Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species (Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%–54%) and C. stigmatias (65.7%–75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agüera A, Brophy D. 2011. Use of saggittal otolith shape analysis to discriminate Northeast Atlantic and western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish. Res., 110: 465–471.

    Article  Google Scholar 

  • Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere J T, Sfakianakis D G, Somarakis S. 2012. Discriminating farmed gilthead sea bream Sparus aurata and European sea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J. Fish. Biol., 80: 2 159–2 175.

    Article  Google Scholar 

  • Begg G A, Overholtz W J, Munroe N J. 2001. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fish. Bull., 99: 1–14.

    Google Scholar 

  • Bird J L, Eppler D T, Checkley D M. 1986. Comparisons of herring otoliths using Fourier-series shape-analysis. Can. J. Fish. Aquat. Sci., 43: 1 228–1 234.

    Article  Google Scholar 

  • Bolles K L, Begg G A. 2000. Distinction between silver hake (Merluccius bilinearis) stocks in U.S. waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull., 98: 451–462.

    Google Scholar 

  • Burke N, Brophy D, King P A. 2008a. Shape analysis of otolith annuli in Atlantic herring (Clupea harengus): a new method for tracking fish populations. Fish. Res., 91: 133–143.

    Article  Google Scholar 

  • Burke N, Brophy D, King P A. 2008b. Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES J. Mar. Sci., 65: 1 670–1 675.

    Article  Google Scholar 

  • Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50: 1 062–1 083.

    Article  Google Scholar 

  • Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. J. Exp. Mar. Biol. Ecol., 397: 1–7.

    Article  Google Scholar 

  • Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci., 61: 158–167.

    Article  Google Scholar 

  • Chen D G. 1991. Fishery Ecology of the Bohai Sea and the Yellow Sea. Marine Press, Beijing. (in Chinese)

    Google Scholar 

  • Chen S Y Y, Lestrel P E, Kerr W J S, McColl J H. 2000. Describing shape changes in the human mandible using elliptical Fourier functions. Eur. J. Orthodont., 22: 205–216.

    Article  Google Scholar 

  • Chu Y D, Luo Y L, Wu H L. 1963. Studies on the Taxonomy of Sciaenidae and Description of the New Species and Genera. Science and Technology Press of Shanghai, Shanghai. (in Chinese)

    Google Scholar 

  • Crampton J S. 1995. Elliptic fourier shape-analysis of fossil bivalves—some practical considerations. Lethaia, 28: 179–186.

    Article  Google Scholar 

  • Dou S Z, Amano Y, Xin Y, Cao L, Shirai K, Otake T, Tsukamoto K. 2012b. Elemental signature in otolith nuclei for stock discrimination of anadromous tapertail anchovy (Coilia nasus) using laser ablation ICPMS. Environ. Biol. Fish., 95: 431–443.

    Article  Google Scholar 

  • Dou S Z, Yu X, Cao L. 2012a. Otolith shape analysis and its application in fish stock discrimination: a case study. Oceanol. Limnol. Sinica, 43: 702–712. (in Chinese with English abstract)

    Google Scholar 

  • Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res., 110: 75–83.

    Article  Google Scholar 

  • Fitch J E, Brownell R L. 1968. Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits. J. Fish. Res. Board Can., 25: 2 561–2 574.

    Article  Google Scholar 

  • Gauldie R W, Nelson D G A. 1990. Otolith growth in fishes. Comp. Biochem. Physiol., A: Physiol., 97 A: 119–135.

    Article  Google Scholar 

  • Iwata H, Ukai Y. 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered., 93: 384–385.

    Article  Google Scholar 

  • Kuhl F P, Giardina C R. 1982. Elliptic Fourier features of a closed contour. Comp. Graph. Ima. Proc., 18: 236–258.

    Article  Google Scholar 

  • L’Abée-Lund J H, Jensen A H. 1993. Otoliths as natural tags in the systematics of salmonids. Environ. Biol. Fish., 36: 389–393.

    Article  Google Scholar 

  • Lombarte A, Castellón A. 1991. Interspecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool., 69: 2 442–2 449.

    Article  Google Scholar 

  • Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish., 37: 297–306.

    Article  Google Scholar 

  • Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol. Fish., 89: 591–605.

    Article  Google Scholar 

  • Lord C, Morat F, Lecomte-Finiger R, Keith P. 2012. Otolith shape analysis for three Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. Environ. Biol. Fish., 93: 209–222.

    Article  Google Scholar 

  • Monteiro L R, Beneditto A P M D, Guillermo L H, Rivera L A. 2005. Allometric changes and shape differentiation of sagittal otoliths in sciaenid fishes. Fish. Res., 74: 288–299.

    Article  Google Scholar 

  • Murie D J, Lavigne D M. 1991. Food consumption of wintering harp seals, Phoca groenlandica, in the St. Lawrence Estuary, Canada. Can. J. Zool., 69: 1 289–1 296.

    Article  Google Scholar 

  • Nasreddine K, Benzinou A, Fablet R. 2009. Shape geodesics for the classification of calcified structures: beyond Fourier shape descriptors. Fish. Res., 98: 8–15.

    Article  Google Scholar 

  • Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshwater Res., 56: 795–804.

    Article  Google Scholar 

  • Parisi-Baradad V, Manjabacasa A, Lombarte A, Olivella R, Chic Ò, Piera J, García-Ladona E. 2010. Automated taxon identification of teleost fishes using an otolith online database-AFORO. Fish. Res., 105: 13–20.

    Article  Google Scholar 

  • Parmentier E, Vandewalle P, Lagardère F. 2001. Morphoanatomy of the otic region in carapid fishes: comorphological study of their otoliths. J. Fish Biol., 58: 1 046–1 068.

    Article  Google Scholar 

  • Piera J, Parisi-Baradad V, García-Ladona E, Lombarte A, Recasens L, Cabestany J. 2005. Otolith shape feature extraction oriented to automatic classification with open distributed data. Mar. Freshwater Res., 56: 805–814.

    Article  Google Scholar 

  • Ponton D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? Comput. Vis. Imag. Underst., 267: 750–757.

    Google Scholar 

  • Reichembacher B, Sienknecht U, Küchenhoff H, Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant Killifish (Aphanius prolebias). J. Morphol., 268: 898–915.

    Article  Google Scholar 

  • Reig-Bolaño R, Marti-Puig R, Lombarte A, Soria J A, Parisi-Baradad V. 2010. A new otolith image contour descriptor based on partial reflection. Environ. Biol. Fish., 89: 579–590.

    Article  Google Scholar 

  • Reist J D. 1986. An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Can. J. Zool., 64: 1 363–1 368.

    Article  Google Scholar 

  • SAS Institute Inc. 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Škeljo F, Ferri J. 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. J. Appl. Ichthyol., 28: 524–530.

    Article  Google Scholar 

  • Smith S J, Campana S E. 2010. Integrated stock mixture analysis for continuous and categorical data, with application to genetic-otolith combinations. Can. J. Fish. Aquat. Sci., 67: 1 533–1 548.

    Article  Google Scholar 

  • Stransky C, MacLellan S E. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci., 62: 2 265–2 276.

    Article  Google Scholar 

  • Stransky C, Murta A G, Schlickeisen J, Zimmermannc C. 2008. Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fish. Res., 89: 159–166.

    Article  Google Scholar 

  • Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptic Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77: 138–147.

    Article  Google Scholar 

  • Tuset V M, Lombarte A, Gonzales J A, Pertusa J F, Lorentes M J. 2003a. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish. Biol., 63: 1 491–1 504.

    Article  Google Scholar 

  • Tuset V M, Lozano I J, González1 J A, Pertusa J F, García-Díaz1 M M. 2003b. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol., 19: 88–93.

    Article  Google Scholar 

  • Tuset V M, Rosin P L. 2006. Sagittal otolith shape used in the identification of fishes of the genus Serrranus. Fish. Res., 81: 316–325.

    Article  Google Scholar 

  • Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol., 420–421: 26–32.

    Article  Google Scholar 

  • Wang Y J, Ye Z J, Liu Q, Cao L. 2011. Stock discrimination of spottedtail goby (Synechogobius ommaturus) in the Yellow Sea by analysis of otolith shape. Oceanol. Limnol. Sinica, 29: 192–198.

    Google Scholar 

  • Yu X, Cao L, Nan O, Zhao B, Dou S Z. 2013. Stock identification of Coilia mystus using otolith shape analysis. Oceanol. Limnol. Sinica, 44: 768–774. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuozeng Dou  (窦硕增).

Additional information

Supported by the National Natural Science Foundation of China (NSFC) (Nos. 40976084, U1406403, 41121064)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Cao, L., Liu, J. et al. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters. Chin. J. Ocean. Limnol. 32, 1060–1073 (2014). https://doi.org/10.1007/s00343-015-4022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4022-0

Keyword

Navigation