Skip to main content
Log in

Analysis of multi-dimensional SAR for determining the thickness of thin sea ice in the Bohai Sea

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to acquire sea ice data in all weather conditions, and it is a useful tool for monitoring sea ice conditions. In this paper, we combine a multi-layered sea ice electromagnetic (EM) scattering model with a sea ice thermodynamic model to assess the determination of the thickness of flat thin ice in the Bohai Sea using SAR at different frequencies, polarization, and incidence angles. Our modeling studies suggest that co-polarization backscattering coefficients and the co-polarized ratio can be used to retrieve the thickness of flat thin ice from C- and X-band SAR, while the co-polarized correlation coefficient can be used to retrieve flat thin ice thickness from L-, C-, and X-band SAR. Importantly, small or moderate incidence angles should be chosen to avoid the effect of speckle noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai S, Wu H. 1998. Numerical sea ice forecast for the Bohai Sea. Acta Meteorologica Sinica, 56: 139–153. (in Chinese with English abstract)

    Google Scholar 

  • Cox G, Weeks W. 1974. Salinity variations in sea ice. J. Glaciol., 13(67): 109–120.

    Google Scholar 

  • Cox G, Weeks W. 1983. Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol., 29(102): 306–316.

    Google Scholar 

  • Cox G, Weeks W. 1988. Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season. J. Geophys. Res., 93(C10): 12 449–12 460.

    Article  Google Scholar 

  • Dierking W, Busche T. 2006. Sea ice monitoring by L-Band SAR: an assessment based on literature and comparisons of JERS-1 and ERS-1 imagery. IEEE Trans. Geosci. Remote Sensing, 44(2): 957–970.

    Article  Google Scholar 

  • Fukusako S. 1990. Thermophysical properties of ice, snow, and sea ice. Int. J. Thermophys., 11(2): 353–372.

    Article  Google Scholar 

  • Fung A K. 1994. Microwave Scattering and Emission Models and Their Applications. Artech House, Norwood. 573p.

    Google Scholar 

  • Glover J, McCulloch J S G. 1958. The empirical relation between solar radiation an hours of sunshine. Quarter Journal of the Royal Meteorological Society of London, 84(5): 54–65.

    Google Scholar 

  • Gu W, Zhang Q Y, Xie F et al. 2003. Estimation of the amount of sea ice resources in Liaodong gulf by climate statistics. Resources Science, 25(3): 9–16. (in Chinese with English abstract)

    Google Scholar 

  • Ji S Y, Yue Q J, Zhang X. 2000. Thermodynamic analysis during sea ice growth in the Liaodong Bay. Marine Environmental Science, 19(3): 35–39. (in Chinese with English abstract)

    Google Scholar 

  • Kim J W, Lim D J, Hwang B J. 2012. Characterization of Arctic Sea ice thickness using high-resolution spaceborne polarimetric SAR data. IEEE Trans. Geosci. Remote Sensing, 50(1): 13–22.

    Article  Google Scholar 

  • Kwok R, Nghiem S V, Yueh S H et al. 1995. Retrieval of thin ice thickness from multi-frequency polarimetric SAR data. Rem. Sens. Environ., 51: 361–374.

    Article  Google Scholar 

  • Kwok R, Rignot E, Holt B et al. 1992. Identification of sea ice types in spaceborne synthetic aperture radar data. J. Geophys. Res., 97(C2): 2 391–2 402.

    Article  Google Scholar 

  • Lee J S, Grunes M, Kwok R. 1994. Classification of multilook polarimetric SAR imagery based on complex wishart distribution. Int. J. Remote Sens., 15(11): 2 299–2 311.

    Article  Google Scholar 

  • Li Z J. 1999. Field Investigation of sea ice in the Liaodong Gulf. Marine Forecasts, 16(3): 48–56. (in Chinese with English abstract)

    Google Scholar 

  • Martin S, Drucker R, Kwok R et al. 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. J. Geophys. Res., 109: C10012.

    Article  Google Scholar 

  • Martin S, Drucker R, Kwok R et al. 2005. Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophys. Res. Lett., 32: L05505.

    Article  Google Scholar 

  • Matsuoka T, Uratsuka S, Satake M et al. 2001. CRL/NASDA airborne SAR (Pi-SAR) observations of sea ice in the sea of Okhotsk. Ann. Glaciol., 33: 115–119.

    Article  Google Scholar 

  • Maykut G. 1978. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83(C7): 3 646–3 658.

    Article  Google Scholar 

  • Maykut G. 1982. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87(C10): 7 991–7 984.

    Article  Google Scholar 

  • Nakamura K, Wakabayashi H, Naoki K et al. 2005. Observation of sea-ice thickness in the Sea of Okhotsk by using dualfrequency and fully polarimetric airborne SAR (Pi-SAR) data. IEEE Trans. Geosci. Remote Sensing, 43(11): 2 460–2 469.

    Article  Google Scholar 

  • Nakamura K, Wakabayashi H, Uto S et al. 2009. Observation of sea-ice thickness using ENVISAT data from Lützow-Holm Bay, East Antarctica. IEEE Geosci. Remote Sensing Lett., 6(2): 277–281.

    Article  Google Scholar 

  • Nghiem S V, Kong J A, Shin R T et al. 1993. A model with ellipsoidal scatterers for polarimetric remote sensing of anisotropic layered media. Radio Sci., 28(5): 687–703.

    Article  Google Scholar 

  • Nghiem S V, Kwok R, Yueh S H et al. 1995. Polarimetric signatures of sea ice 1. Theoretical model. J. Geophys. Res., 100(C7): 13 665–13 679.

    Google Scholar 

  • Nghiem S V, Kwok R, Yueh S H et al. 1997. Evolution in Polarimetric signatures of thin saline ice under constant growth. Radio Sci., 32(1): 127–151.

    Article  Google Scholar 

  • Ning L, Xie F, Xu Y J et al. 2009. Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type. Int. J. Remote Sensing, 30(17): 4 539–4 552.

    Article  Google Scholar 

  • Peterson I K, Prinsenberg S J, Holladay J S. 2008. Observations of sea ice thickness, surface roughness and ice motion in Amundsen Gulf. J. Geophys. Res., 113(C06016): 1–14.

    Google Scholar 

  • Qu P, Zhao J P, Li S J et al. 2009. Spectral features of solar radiation in sea ice of Bohai Sea. Acta Oceanologica Sinica, 31(1): 37–43. (in Chinese with English abstract)

    Google Scholar 

  • Rignot E, Drinkwater M R. 1994. Winter sea ice mapping from multiparameter synthetic aperture radar data. J. Glaciol., 40(134): 31–45.

    Google Scholar 

  • Shih S E, Ding K H, Kong J A et al. 1998a. Saline ice thickness retrieval under diurnal thermal cycling conditions. IEEE Trans. Geosci. Remote Sensing, 36(5): 1 731–1 742.

    Google Scholar 

  • Shih S E, Ding K H, Nghiem S V et al. 1998b. Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements. IEEE Trans. Geosci. Remote Sensing, 36(5): 1 589–1 598.

    Google Scholar 

  • Small D, Miranda N, Meier E. 2009. A revised radiometric normalisation standard for SAR. IEEE Geoscience and Remote Sensing Symposium, 4: 566–569.

    Google Scholar 

  • Tamura T, Ohshima K I, Markus T et al. 2007. Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. J. Atmos. Ocean. Technol., 24(10): 1 757–1 772.

    Article  Google Scholar 

  • Toyota T, Nakamura K, Uto S et al. 2009. Retrieval of sea ice thickness distribution in the seasonal ice zone from airborne L-band SAR. Int. J. Remote Sensing, 30(12): 3 171–3 189.

    Article  Google Scholar 

  • Tsang L, Kong J A, Newton R W. 1982. Application of strong fluctuation random medium theory to scattering of electromagnetic waves from a half-space of dielectric mixture, IEEE Trans. Antennas Propag., 30(2): 292–302.

    Article  Google Scholar 

  • Ulaby F T, Moore R K, Fung A K. 1986. Microwave Remote Sensing: Active and Passive, vol. 3, From Theory to Applications. Dedham, MA: Artech House.

    Google Scholar 

  • Wakabayashi H, Matsuoka T, Nakamura K et al. 2004. Polarimetric characteristics of sea ice in the Sea oce Okhotsk observed by airborne L-band SAR. IEEE Trans. Geosci. Remote Sensing, 42(11): 2 412–2 425.

    Article  Google Scholar 

  • Wang A, Sun Y, Liu X. 2003. The exploitation and utilization of the ice in Bohai Sea used as freshwater resources and region sustainable development. Journal of Beijing Normal University (Social Science Edition), 177: 85–92. (in Chinese with English abstract)

    Google Scholar 

  • Wang K G, Wang C X, Wu H D. 2000. A solution of sea ice thermodynamic process for the Bohai Sea. Marine Science Bulletin, 19(5): 1–11. (in Chinese with English abstract)

    Google Scholar 

  • Weller G. 1972. Radiation flux investigation. AIDJEX Bull., 14: 28–30.

    Google Scholar 

  • Xie F, Gu W, Ha S et al. 2006. An experimental study on the spectral characteristics of one-year-old sea ice in Bohai Sea, China. Int. J. Remote Sensing, 27(14): 3 057–3 063.

    Article  Google Scholar 

  • Yang G J. 2000. Sea Ice Engineering Science. Petroleum Industry Press, Beijing. (in Chinese)

    Google Scholar 

  • Yue H B. 2008. Sea Ice Information Retrieval from Remote Sensing Images and Law Analysis of Liaodong Bay. Ph.D. Thesis, Ocean University of China, Qingdao. (in Chinese with English abstract)

    Google Scholar 

  • Yue Q J, Ji S Y, Miao W D et al. 2000. Solar Radiation on Sea Ice in Liaodong Bay. Oceanologia et Limnologia Sinica, 31(5): 562–567. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang  (张晰).

Additional information

Supported by the Major Program of the National Natural Science Foundation of China (No. 60890075) and the National Natural Science Foundation of China for Young Scientists (No. 40906093)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, J., Meng, J. et al. Analysis of multi-dimensional SAR for determining the thickness of thin sea ice in the Bohai Sea. Chin. J. Ocean. Limnol. 31, 681–698 (2013). https://doi.org/10.1007/s00343-013-2057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2057-7

Keyword

Navigation