Skip to main content
Log in

EST-derived SNP discovery and selective pressure analysis in Pacific white shrimp (Litopenaeus vannamei)

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Pacific white shrimp has become a major aquaculture and fishery species worldwide. Although a large scale EST resource has been publicly available since 2008, the data have not yet been widely used for SNP discovery or transcriptome-wide assessment of selective pressure. In this study, a set of 155 411 expressed sequence tags (ESTs) from the NCBI database were computationally analyzed and 17 225 single nucleotide polymorphisms (SNPs) were predicted, including 9 546 transitions, 5 124 transversions and 2 481 indels. Among the 7 298 SNP substitutions located in functionally annotated contigs, 58.4% (4 262) are non-synonymous SNPs capable of introducing amino acid mutations. Two hundred and fifty nonsynonymous SNPs in genes associated with economic traits have been identified as candidates for markers in selective breeding. Diversity estimates among the synonymous nucleotides were on average 3.49 times greater than those in non-synonymous, suggesting negative selection. Distribution of non-synonymous to synonymous substitutions (Ka/Ks) ratio ranges from 0 to 4.01, (average 0.42, median 0.26), suggesting that the majority of the affected genes are under purifying selection. Enrichment analysis identified multiple gene ontology categories under positive or negative selection. Categories involved in innate immune response and male gamete generation are rich in positively selected genes, which is similar to reports in Drosophila and primates. This work is the first transcriptome-wide assessment of selective pressure in a Penaeid shrimp species. The functionally annotated SNPs provide a valuable resource of potential molecular markers for selective breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker G, Batley J, O’sullivan H, Edwards K J, Edwards D. 2003. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics, 19(3): 421–422.

    Article  Google Scholar 

  • Brooker A L, Benzie J A H, Blair D, Versini J J. 2000. Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers. Marine Biology, 136(1): 149–157.

    Article  Google Scholar 

  • Bustamante C D, Fledel-Alon A, Williamson S, Nielsen R, Hubisz M T, Glanowski S, Tanenbaum D M, White T J, Sninsky J J, Hernandez R D, Civello D, Adams M D, Cargill M, Clark A G. 2005. Natural selection on proteincoding genes in the human genome. Nature, 437(7 062): 1 153–1 157.

    Article  Google Scholar 

  • Cheng T C, Xia Q Y, Qian J F, Liu C, Lin Y, Zha X F, Xiang Z H. 2004. Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochemistry and Molecular Biology, 34(6): 523–530.

    Article  Google Scholar 

  • Ciobanu D C, Bastiaansen J W M, Magrin J, Rocha J L, Jiang D H, Yu N, Geiger B, Deeb N, Rocha D, Gong H, Kinghorn B P, Plastow G S, van der Steen H A M, Mileham A J. 2010. A major SNP resource for dissection of phenotypic and genetic variation in Pacific white shrimp (Litopenaeus vannamei). Animal Genetics, 41(1): 39–47.

    Article  Google Scholar 

  • Clark N L, Swanson W J. 2005. Pervasive adaptive evolution in primate seminal proteins. PLoS Genetics, 1(3): 335–342.

    Article  Google Scholar 

  • Du Z Q, Ciobanu D C, Onteru S K, Gorbach D, Mileham A J, Jaramillo G, Rothschild M F. 2010. A gene-based SNP linkage map for pacific white shrimp, Litopenaeus vannamei. Animal Genetics, 41(3): 286–294.

    Article  Google Scholar 

  • Glenn K L, Grapes L, Suwanasopee T, Harris D L, Li Y, Wilson K, Rothschild M F. 2005. SNP analysis of AMY2 and CTSL genes in Litopenaeus vannamei and Penaeus monodon shrimp. Animal Genetics, 36(3): 235–236.

    Article  Google Scholar 

  • Gorbach D M, Hu Z L, Du Z Q, Rothschild M F. 2009. SNP discovery in Litopenaeus vannamei with a new computational pipeline. Animal Genetics, 40(1): 106–109.

    Article  Google Scholar 

  • Gray Y H M, Sved J A, Preston C R, Engels W R. 1998. Structure and associated mutational effects of the cysteine proteinase (CP1) gene of Drosophila melanogaster. Insect Molecular Biology, 7(3): 291–293.

    Article  Google Scholar 

  • Gross P S, Bartlett T C, Browdy C L, Chapman R W, Warr G W. 2001. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Developmental and Comparative Immunology, 25(7): 565–577.

    Article  Google Scholar 

  • Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin J D. 2001. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 98(12): 6 848–6 852.

    Article  Google Scholar 

  • Hayes B, Laerdahl J K, Lien S, Moen T, Berg P, Hindar K, Davidson W S, Koop B F, Adzhubei A, Hoyheim B. 2007. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture, 265(1–4): 82–90.

    Article  Google Scholar 

  • Hudson R R. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18(2): 337–338.

    Article  Google Scholar 

  • Hung I H, Casareno R L B, Labesse G, Mathews F S, Gitlin J D. 1998. HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. Journal of Biological Chemistry, 273(3): 1 749–1 754.

    Article  Google Scholar 

  • Jiggins F M, Kim K W. 2007. A screen for immunity genes evolving under positive selection in Drosophila. Journal of Evolutionary Biology, 20(3): 965–970.

    Article  Google Scholar 

  • Jorde L B. 2000. Linkage disequilibrium and the search for complex disease genes. Genome Research, 10(10): 1 435–1 444.

    Article  Google Scholar 

  • Kimura M. 1977. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature, 267(19): 275–276.

    Article  Google Scholar 

  • Landegren U, Nilsson M, Kwok P Y. 1998. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Research, 8(8): 769–776.

    Google Scholar 

  • Meehan D, Xu Z K, Zuniga G, Alcivar-Warren A. 2003. High frequency and large number of polymorphic Microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei Crustacea: Decapoda. Marine Biotechnology, 5(4): 311–330.

    Article  Google Scholar 

  • Miyata T, Miyazawa S, Yasunaga T. 1979. Two types of amino acid substitutions in protein evolution. Journal of Molecular Evolution, 12(3): 219–236.

    Article  Google Scholar 

  • Moen T, Hayes B, Nilsen F, Delghandi M, Fjalestad K T, Fevolden S E, Berg P R, Lien S. 2008. Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. Bmc Genetics, 9: 18.

    Article  Google Scholar 

  • Moore S S, Whan V, Davis G P, Byrne K, Hetzel D J S, Preston N. 1999. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture, 173(1–4): 19–32.

    Article  Google Scholar 

  • Morin P A, Martien K K, Taylor B L. 2009. Assessing statistical power of SNPs for population structure and conservation studies. Molecular Ecology Resources, 9(1): 66–73.

    Article  Google Scholar 

  • Nei M. 2005. Selectionism and neutralism in molecular evolution. Molecular Biology and Evolution, 22(12): 2 318–2 342.

    Article  Google Scholar 

  • Nielsen R. 2000. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics, 154(2): 931–942.

    Google Scholar 

  • Nielsen R, Bustamante C, Clark A G, Glanowski S, Sackton T B, Hubisz M J, Fledel-Alon A, Tanenbaum D M, Civello D, White T J, Sninsky J J, Adams M D, Cargill M. 2005. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biology, 3(6): 976–985.

    Article  Google Scholar 

  • Novaes E, Drost D R, Farmerie W G, Pappas G J, Grattapaglia D, Sederoff R R, Kirst M. 2008. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics, 9(1): 312.

    Article  Google Scholar 

  • O’Leary N A, Trent H F, Robalino J, Peck M E T, McKillen D J, Gross P S. 2006. Analysis of multiple tissue-specific cDNA libraries from the Pacific whiteleg shrimp, Litopenaeus vannamei. Integrative and Comparative Biology, 46(6): 931–939.

    Article  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J. 1980. The evolution of genes: the chicken preproinsulin gene. Cell, 20(2): 555–566.

    Article  Google Scholar 

  • Pertea G, Huang X Q, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5): 651–652.

    Article  Google Scholar 

  • Roth C, Liberles D A. 2006. A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biology, 6: 12.

    Article  Google Scholar 

  • Shapiro J A, Huang W, Zhang C H, Hubisz M J, Lu J, Turissini D A, Fang S, Wang H Y, Hudson R R, Nielsen R, Chen Z, Wu C I. 2007. Adaptive genic evolution in the Drosophila genomes. Proceedings of the National Academy of Sciences of the United States of America, 104(7): 2 271–2 276.

    Article  Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton J M. 2010. Gene mapping in the wild with SNPs: guidelines and future directions (vol. 136, p.97, 2009). Genetica, 138(4): 467–467.

    Article  Google Scholar 

  • Smith N G C, Eyre-Walker A. 2002. Adaptive protein evolution in Drosophila. Nature, 415(6 875): 1 022–1 024.

    Article  Google Scholar 

  • Swanson W J, Clark A G, Waldrip-Dail H M, Wolfner M F, Aquadro C F. 2001. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98(13): 7 375–7 379.

    Article  Google Scholar 

  • Syvanen A C. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12): 930–942.

    Article  Google Scholar 

  • Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society), 17: 57–86.

    Google Scholar 

  • Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 28(3): 286–289.

    Article  Google Scholar 

  • Voight B F, Kudaravalli S, Wen X Q, Pritchard J K. 2006. A map of recent positive selection in the human genome. PLoS Biology, 4(3): 446–458.

    Article  Google Scholar 

  • Williamson S H, Hubisz M J, Clark A G, Payseur B A, Bustamante C D, Nielsen R. 2007. Localizing recent adaptive evolution in the human genome. PLoS Genetics, 3(6): 901–915.

    Article  Google Scholar 

  • Wilson K, Li Y T, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J. 2002. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 204(3–4): 297–309.

    Article  Google Scholar 

  • Wolfner M F. 2002. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity, 88: 85–93.

    Article  Google Scholar 

  • Wyban J. 2007. Domestication of pacific white shrimp revolutionizes aquaculture. Global Aquaculture Advocate, 10: 42–44.

    Google Scholar 

  • Yang Z, Bielawski J P. 2000. Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15(12): 496–503.

    Article  Google Scholar 

  • Yang Z H, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution, 17(1): 32–43.

    Article  Google Scholar 

  • Yu M, Cheng Y, Rothschild M F. 2006. SNP analysis of molting related genes in Penaeus monodon and Litopenaeus vannamei shrimp (Brief report). Archiv Fur Tierzucht — Archives of Animal Breeding, 49(4): 411–412.

    Google Scholar 

  • Zeng D G, Chen X H, Li Y M, Peng M, Ma N, Jiang W M, Yang C L, Li M. 2008. Analysis of HSP70 in Litopenaeus vannamei and detection of SNPs. Journal of Crustacean Biology, 28(4): 727–730.

    Article  Google Scholar 

  • Zhang Z, Li J, Zhao X Q, Wang J, Wong G K S, Yu J. 2006. KaKs_calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics & Bioinformatics, 4(4): 259–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhai Xiang  (相建海).

Additional information

Supported by the Key Program of National Natural Science Foundation of China (No. 30730071), the National High Technology R&D Program of China (863 Program) (No. 2012AA10A404), and the Agricultural Science and Technology Achievements Transformation Funds Project (No. 2010GB24910700)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Wang, X., Xiang, J. et al. EST-derived SNP discovery and selective pressure analysis in Pacific white shrimp (Litopenaeus vannamei). Chin. J. Ocean. Limnol. 30, 713–723 (2012). https://doi.org/10.1007/s00343-012-1252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1252-2

Keyword

Navigation