Skip to main content
Log in

Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Oceanic uptake of anthropogenic carbon dioxide results in a decrease in seawater pH, a process known as “ocean acidification”. The pearl oyster Pinctada fucata, the noble scallop Chlamys nobilis, and the green-lipped mussel Perna viridis are species of economic and ecological importance along the southern coast of China. We evaluated the effects of seawater acidification on clearance, respiration, and excretion rates in these three species. The ammals were reared in seawater at pH 8.1 (control), 7.7, or 7.4. The clearance rate was highest at pH 7.7 for P. fucata and at pH 8.1 for C. nobilis and P. viridis. The pH had little effect on the respiration rate of P. fucata and P. viridis. In contrast, the respiration rate was significantly lower at pH 7.4 in C. nobilis. The excretion rate was significantly lower at pH 7.4 than pH 8.1 for all species. The results indicate that the reduction in seawater pH likely affected the metabolic process (food intake, oxygen consumption, and ammonia excretion) of these bivalves. Different species respond differently to seawater acidification. Further studies are needed to demonstrate the exact mechamsms for this effect and evaluate adaptability of these bivalves to future acidified oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg S J, Fisher S, Landrum P F. 1996. Clearance and processing of algal particles by zebra mussels (Dreissena polymorpha). J. Great Lakes Res., 22: 779–788.

    Article  Google Scholar 

  • Berge JA, Bjerkeng B, Pettersen O, Schanmng M T, Oxnevad S. 2006. Effects of mcreased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere, 62: 681–687.

    Article  Google Scholar 

  • Bibby R, Widdicombe S, Parry H, Spicer J I, Pipe R. 2008. Impact of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat. Biol., 2: 67–74.

    Article  Google Scholar 

  • Caldeira K, Wickert M E. 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365–368.

    Article  Google Scholar 

  • Caldeira K, Wickert M E. 2005. Ocean model prediction of chemistry changes from carbon dioxide emission to the atmosphere and ocean. Geophys. Res. Lett., 110: C09S04. http://dx.doi.org/10.1029/2004JC002671.

    Google Scholar 

  • Choi M C, Hsieh D P H, Lam P K S, Wang W X. 2003. Field depuration and biotransformation of paralytic shellfish toxins in scallop Chlamys nobilis and green-lipped mussel Perna viridis. Mar. Biol., 143: 927–934.

    Article  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssié J L, Gattuso J P. 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences, 6: 1 877–1882.

    Article  Google Scholar 

  • Czemy J, Barcelos e Ramos J, Riebesell U. 2009. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobactenum Nodularia spumigena. Biogeosciences, 6: 1 865–1 875.

    Google Scholar 

  • Doney S C, Fabry V J, Feely RA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci., 1: 169–192.

    Article  Google Scholar 

  • Dupont S, Thorndyke M. 2009. Impact of CO2-dnven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosciences Discuss., 6: 3 109–3 131.

    Article  Google Scholar 

  • Dupont S, Thorndyke M. 2008. Ocean acidification and its impact on the early life-history stages of marine animals, In: Impact of Acidification on Biological, Chemical and Physical Systems in the Mediterranean and Black Seas, CIESM, Mongraph. p. 89–97.

  • Feely RA, Sabine C L, Lee K, Berelson W, Kleypas J, Fabry V J, Millero F J. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305: 362–366.

    Article  Google Scholar 

  • Fmdlay H S, Wood H L, Kendall M A, Spicer J I, Twitchett R J, Widdicombe S. 2009. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss., 6: 2 267–2 284.

    Google Scholar 

  • Gazeau F, Quibher C, Jansen J M, Gattuso J P, Middelburg J J, Heip C H R. 2007. Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett., 34: L07603, http://dx.doi.org/10.1029/2006GL028554.

    Article  Google Scholar 

  • Grasshoff K, Erhardt M, Kremling K. 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Gumotte J M, Fabry V J. 2008. Ocean acidification and its potential effects on marine ecosystems. Ann. New York Acad. Sci., 1 134: 320–342.

    Article  Google Scholar 

  • Gutierrez J L, Jones C G, Strayer D L, Libarne O O. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos, 101: 79–90.

    Article  Google Scholar 

  • Havenhand JN, Schlegel P. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences Discuss., 6: 4 573–4 586.

    Article  Google Scholar 

  • He M X, Huang L M, Shi J H, Jiang Y P. 2005. Variability of nbosomal DNA ITS-2 and its utility m detecting genetic relatedness of pearl oyster. Mar. Biotechnol., 15: 40–45.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z et al. eds. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jørgensen C B. 1990. Bivalve filter feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology. Olsen & Olsen. p. 140.

  • Kurrhara H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser., 373: 275–284.

    Article  Google Scholar 

  • Kurrhara H, Asai T, Kato S, Ishrmatsu A. 2008. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat. Biol., 4: 225–233.

    Article  Google Scholar 

  • Kurrhara H, Kato S, Ishimatsu A. 2007. Effects of increased seawater pCO2 on the early development of the oyster Crassostrea gigas. Aquat. Bio., 1: 91–98.

    Article  Google Scholar 

  • Loayza-Muro R, Elias-Letts R. 2007. Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: effect of pH, temperature and metals on filtration rate. Environ. Pollut., 149: 209–215.

    Article  Google Scholar 

  • Mao Y Z, Zhou Y, Yang H S, Wang R C. 2006. Seasonal vanation in metabolism of cultured Pacific oyster, Crassostrea gigas, in Sanggou Bay, China. Aquaculture, 253: 322–333.

    Article  Google Scholar 

  • Michaehdis B, Ouzoums C, Paieras A, Pörtner H O. 2005. Effects of long-term moderate hypercapma on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser., 293: 109–118.

    Article  Google Scholar 

  • Nagarajan R, Lea S E G, Goss-Custard J D. 2006. Seasonal variations in mussel Mytilus edulis L. shell thickness and strength and their ecological implications. J. Exp. Mar. Biol. Ecol., 339: 241–250.

    Article  Google Scholar 

  • Orr J C, Fabry V J, Aumont O, Bopp L et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681–686.

    Article  Google Scholar 

  • Sabine C, Feely R A, Gruber N, Key R M et al. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371.

    Article  Google Scholar 

  • Saucedo P E, Ocampo L, Monteforte M, Bervera H. 2004. Effect of temperature on oxygen consumption and ammonia excretion m the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture, 229: 377–387.

    Article  Google Scholar 

  • Sylvester F, Dorado J, Boltovskoy D, Juarez A, Cataldo D. 2005. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia, 534: 71–80.

    Article  Google Scholar 

  • Todgham A E, Hofmann G E. 2009. Transcnptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol., 212: 2 579–2 594.

    Article  Google Scholar 

  • Widdicombe S, Needham H R. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virensand sediment nutrient flux. Mar. Ecol. Prog. Ser., 341: 111–122.

    Article  Google Scholar 

  • Wood H L, Spicer J I, Widdicombe S. 2008. Ocean acidification may increase calcification rates, but at a cost. Proc. R. Soc. B, 275: 1 767–1 773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoxian He  (何毛贤).

Additional information

Supported by National Natural Science Foundation of China (No. 41006090), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-03), and the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10A409)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., He, M. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin. J. Ocean. Limnol. 30, 206–211 (2012). https://doi.org/10.1007/s00343-012-1067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1067-1

Keyword

Navigation