Skip to main content
Log in

Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii

  • Cyanobacterial Blooms
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The freshwater cyanobacterium, Cylindrospermopsis raciborskii (Wo’oszyńska) Seenayya and Subba Raju is a common species in lakes and reservoirs globally. In some areas of the world it can produce cyto- and hepatotoxins (cylindrospermopsins, saxitoxins), making blooms of this species a serious health concern for humans. In the last 10–15 years, there has been a considerable body of research conducted on the ecology, physiology and toxin production of this species and this paper reviews these studies with a focus on the cylindrospermopsin (CYN)-producing strains. C. raciborskii has low light requirements, close to neutral buoyancy, and a wide temperature tolerance, giving it the capacity to grow in many lentic waterbodies. It also has a flexible strategy with respect to nitrogen (N) utilisation; being able to switch between utilising fixed and atmospheric N as sources of N fluctuate. Additionally this species has a high phosphate (DIP) affinity and storage capacity. Like many cyanobacteria, it also has the capacity to use dissolved organic phosphorus (DOP). Changes in nutrient concentrations, light levels and temperature have also been found to affect production of the toxin CYN by this species. However, optimal toxin production does not necessarily occur when growth rates are optimal. Additionally, different strains of C. raciborskii vary in their cell quota of CYN, making it difficult to predict toxin concentrations, based on C. raciborskii cell densities. In summary, the ecological flexibility of this organism means that controlling blooms of C. raciborskii is a difficult undertaking. However, improved understanding of factors promoting the species and toxin production by genetically capable strains will lead to improved predictive models of blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antenucci J, Ghanouani A, Burford M, Romero J. 2005. The impact of artificial destratification on phytoplankton species composition in a sub-tropical reservoir. Freshwater Biol., 50: 1 081–1 093.

    Article  Google Scholar 

  • Banker R, Carmeli S, Hadas O, Teltsch B, Porat R, Sukenik A. 1997. Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret. Isr. J. Phycol., 33: 613–616.

    Article  Google Scholar 

  • Baxa D V, Kurobe T, Ger K A, Lehman P W, Teh S J. 2010. Estimating the abundance of toxic Microcystis in the San Francisco Estuary using quantitative real-time PCR. Harmful Algae, 9: 342–349.

    Article  Google Scholar 

  • Bouvy M, Molica R J R, De Oliveira S M, Marinho M, Beker B. 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in semiarid northeast, Brazil. Aquat. Microb. Ecol., 20: 285–297.

    Article  Google Scholar 

  • Bouvy M, Falcao D, Marinho M, Pagano M, Moura A. 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microb. Ecol., 23: 13–27.

    Article  Google Scholar 

  • Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R. 2006. Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat. Microb. Ecol., 45: 147–161.

    Article  Google Scholar 

  • Briand J F, Leboulanger C, Humbert J F, Bernard C, Dufour P. 2004. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming. J. Phycol., 40: 231–238.

    Article  Google Scholar 

  • Branco C W C, Senna P A C. 1996. Relations among heterotrophic bacteria, chlorophyll-a, total phytoplankton, total zooplankton and physical and chemical features in the Paranoa reservoir, Brasilia, Brazil. Hydrobiologia, 337: 171–181.

    Article  Google Scholar 

  • Burford M A, O’Donohue M J. 2006. A comparison of phytoplankton community assemblages in artificial and naturally mixed subtropical water reservoirs. Freshwater Biol., 51: 973–982.

    Article  Google Scholar 

  • Burford M A, McNeale K L, McKenzie-Smith F J. 2006. The role of nitrogen in promoting Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshwater Biol., 51: 2 143–2 153.

    Google Scholar 

  • Burford M A, Johnston S A, Cook A J, Packer T V, Taylor B M, Townsley E R. 2007. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res., 41: 4 105–4 114.

    Article  Google Scholar 

  • Chapman A D, Schelske C L. 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes. J. Phycol., 33: 191–195.

    Article  Google Scholar 

  • Chonudomkul D, Yongmanitchai W, Theeragool G, Kawachi M, Kasai F, Kaya K, Watanabe M M. 2004. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiol. Ecol., 48: 345–355.

    Article  Google Scholar 

  • Conroy J D, Quinlan E L, Kane D D, Culver D A. 2007. Cylindrospermopsis in Lake Erie: Testing its association with other cyanobacterial genera and major limnological parameters. J. Great Lakes Res., 33: 519–535.

    Article  Google Scholar 

  • Davis T W, Berry D L, Boyer G L, Gobler C J. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8: 715–725.

    Article  Google Scholar 

  • Davis T W, Harke M J, Marcoval M A, Goleski J, Orano-Dawson C, Berry D L, Gobler C J. 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during bloom events. Aquat. Microb. Ecol., 61: 149–162.

    Article  Google Scholar 

  • Davis T W, Gobler C J. 2011. Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay. J. Plankt. Res., 33: 415–430.

    Article  Google Scholar 

  • Dufour P, Sarazin G, Quiblier C, Sane S, Leboulanger C. 2006. Cascading nutrient limitation of the cyanobacterium Cylindrospermopsis raciborskii in a Sahelian lake (North Senegal). Aquat. Microbial Ecol., 44: 219–230.

    Article  Google Scholar 

  • Dyble J, Tester P A, Litaker R W. 2006. Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. Afr. J. Mar. Sci., 28: 309–312.

    Article  Google Scholar 

  • Edwards D J, Marquez B L, Nogle L M, McPhail K, Goeger D E, Roberts M A, Gerwick W H. 2004. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscule. Chem. Biol., 11: 817–833.

    Article  Google Scholar 

  • Fabbro L D, Duivenvoorden L J. 1996. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju in the Fitzroy River in tropical central Queensland. Mar. Freshwater Res., 47: 685–694.

    Article  Google Scholar 

  • Fastner J, Heinze R, Humpage A R, Mischke U, Eaglesham G K, Chorus I. 2003. Cylindrospermopsis occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon, 42: 313–321.

    Article  Google Scholar 

  • Figueredo C C, Giani A. 2009. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): Conditions favouring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica, 39: 264–272.

    Google Scholar 

  • Ha J H, Hidaka T, Tsuno H. 2009. Quantification of toxic Microcystis and evaluation of its dominance ratio in blooms using Real-Time PCR. Environ. Sci. Technol., 43: 812–818.

    Article  Google Scholar 

  • Hamilton P B, Ley L M, Dean S, Pick F R. 2005. The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia, 44: 17–25.

    Article  Google Scholar 

  • Harada K, Ohtani I, Iwamoto K, Suzuki M, Watanabe M F, Watanabe M, Terao K. 1994. Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon, 32: 73–84.

    Article  Google Scholar 

  • Harris G P, Baxter G. 1996. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshwater Biol., 35: 545–560.

    Article  Google Scholar 

  • Havens K E, Philips E J, Cichra M F, Li B L. 1998. Light availability as a possible regulator of cyanobacterial species composition in a shallow subtropical lake. Freshwater Biol., 39: 547–556.

    Article  Google Scholar 

  • Hawkins P R, Runnegar M T C, Jackson A R B, Falconer I R. 1985. Severe hepatotoxicity caused by the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl. Environ. Microbiol., 50: 1 292–1 295.

    Google Scholar 

  • Hawkins P R, Putt E, Falconer I, Humpage A. 2001. Phenotypical variation in a toxic strain of the phytoplankter, Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) during batch culture. Environ. Toxicol., 16: 460–467.

    Article  Google Scholar 

  • Hong Y A, Steinman A, Biddanda B, Rediske R, Fahnenstiel G. 2006. Occurrence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii in Mona and Muskegon Lakes, Michigan. J. Great Lakes Res., 32: 645–652.

    Article  Google Scholar 

  • Hotto A M, Satchwell M F, Berry D L, Gobler C J, Boyer G L. 2008. Spatial and temporial diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae, 7: 671–681.

    Article  Google Scholar 

  • Humpage A R, Fenech M, Thomas P, Falconer I R. 2000. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat. Res., 472: 155–161.

    Google Scholar 

  • Isvánovics V, Shafik H M, Présing, Juhos S. 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biol., 43: 257–275.

    Article  Google Scholar 

  • Kehoe M. 2010. Modelling of Physical and Physiological Processes Controlling Primary Production and Growth in Toxic Filamentous Cyanobacteria. Ph. D. Thesis. University of Queensland, Australia.

    Google Scholar 

  • Kellmann R, Mills T, Neilan B A. 2006. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol., 62: 267–280.

    Article  Google Scholar 

  • Kenesi G, Shafik H M, Kovács A W, Herodek S, Présing M. 2009. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia, 623: 191–202.

    Article  Google Scholar 

  • Kiss T, Vehovszky A, Hiripi L, Kovacs A, Voros L. 2002. Membrane effects of toxins isolated from a cyanobacterium, Cylindrospermopsis raciborskii, on identified molluscan neurones. Comp. Biochem. Physiol. Part C, 131: 167–176.

    Google Scholar 

  • Lagos N, Onodera H, Zagatto P A, Andrinolo D, Azevedo S M F Q, Oshima Y. 1999. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon, 37: 1 359–1 373.

    Article  Google Scholar 

  • Li R H, Carmichael W W, Brittain S, Eaglesham G K, Shaw G R, Liu Y D, Watanabe M M. 2001a. First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria). J. Phycol., 37: 1 121–1 126.

    Google Scholar 

  • Li R H, Carmichael W W, Brittain S, Eaglesham G K, Shaw G R, Mahakhant A, Noparatnaraporn N, Yongmanitchai W, Kaya K, Watanabe M M. 2001b. Isolation and identification of the cyanotoxin cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (cyanobacteria). Toxicon, 39: 973–980.

    Article  Google Scholar 

  • Lindenschmidt K E. 1999. Controlling the growth of Microcystis using surged artificial aeration. International Revue of Hydrobiology, 84: 243–254.

    Google Scholar 

  • Messineo V, Melchiorre S, Di Corcia A, Gallo P, Bruno M. 2010. Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, central Italy. Environ. Toxicol., 25: 18–27.

    Google Scholar 

  • Mihali T K, Kellmann R, Muenchhoff J, Barrow K D, Neilan B A. 2008. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl. Environ. Microbiol., 74: 716–722.

    Article  Google Scholar 

  • McGregor G B, Fabbro L D. 2000. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanop tokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes Res. Management, 5: 195–205.

    Article  Google Scholar 

  • McGregor G B, Sendall B C, Hunt L T, Eaglesham G K. 2011. Report of the cyanotoxins cylindrospermopsin and deoxy-cylindrospermopsin from Raphidiopsis mediterranea Skuja (Cyanobacteria/Nostocales). Harmful Algae, 10: 402–410.

    Article  Google Scholar 

  • Moffitt M C, Neilan B A. 2004. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol., 70: 6 353–6 362.

    Article  Google Scholar 

  • Mohamed Z A. 2007. First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbiol. Ecol., 59: 749–761.

    Article  Google Scholar 

  • Moisander P H, Paerl H W, Zehr J P. 2008. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. Limnol. Oceanogr., 53: 2 519–2 522.

    Article  Google Scholar 

  • Moisander P H, Ochiai M, Lincoff A. 2009a. Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae, 8: 889–897.

    Article  Google Scholar 

  • Moisander P H, Lehman P W, Ochiai M, Corum S. 2009b. Diversity of Microcystis aeruginosa in the Kalamath River and San Fancisco Bay delta, California, USA. Aquat. Microb. Ecol., 57: 19–31.

    Article  Google Scholar 

  • Neilan B A, M Saker L, Fastner J, Torokne A, Burns B P. 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol. Ecol., 12: 133–140.

    Article  Google Scholar 

  • Norris R L, Eaglesham G K, Pierens G, Shaw G R, Smith M J, Chiswell R K, Seawright A A, Moore M R. 1999. Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environ. Toxicol., 14: 163–165.

    Article  Google Scholar 

  • Oberholster P J, Botha A M, Cloete T E. 2006. Use of molecular markers as indicators for winter zooplankton grazing on toxic benthic cyanobacteria colonies in an urban Colorado lake. Harmful Algae, 5: 705–716.

    Article  Google Scholar 

  • O’Brien K R, Burford M A, Brookes J D. 2009. Effects of light history on primary productivity in a Cylindrospermopsis raciborskii-dominated reservoir. Freshwater Biol., 54: 272–282.

    Article  Google Scholar 

  • Ohtani I, Moore R E, Runnegar M T C. 1992. Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Amer. Chem. Soc., 114: 7 942–7 944.

    Google Scholar 

  • Orr P T, Jones G J. 1998. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr., 43: 1 604–1 614.

    Article  Google Scholar 

  • Orr P T, Rasmussen J P, Burford M A, Eaglesham G K, Lennox S M. 2010. Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae, 9: 243–254.

    Article  Google Scholar 

  • Padisák J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl., 107: 563–593.

    Google Scholar 

  • Padisák J, Istvanovics V. 1997. Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. International Association of Theoretical and Applied Limnology Proceedings, 26: 574–580.

    Google Scholar 

  • Paerl H W, Huisman J. 2008. Climate—Blooms like it hot. Science, 320: 57–58.

    Article  Google Scholar 

  • Posselt A J. 2010. Are Nutrients the Key Driver in Promoting Dominance of Toxic Cyanobacterial Blooms in a Sub-tropical Reservoir? Ph. D. Thesis. Griffith University, Queensland, Australia.

    Google Scholar 

  • Posselt A J, Burford M A, Shaw G. 2009. Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. J. Phycol., 45: 540–546.

    Article  Google Scholar 

  • Preußel K, Stuken A, Wiedner C, Chorus I, Fastner J. 2006. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon, 47: 156–162.

    Article  Google Scholar 

  • Preußel K, Wessel G, Fastner J, Chorus I. 2009. Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae, 8: 645–650.

    Article  Google Scholar 

  • Présing M, Herodek S, Vörös L, Kóbor I. 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Archiv Hydrobiologia, 136: 553–562.

    Google Scholar 

  • Quiblier C, Leboulanger C, Sané S, Dufour P. 2008. Phytoplankton growth control and risk of cyanobacterial blooms in the lower Senegal River delta region. Water Res., 42: 1 023–1 034.

    Article  Google Scholar 

  • Rasmussen J P, Giglio S, Monis P T, Campbell R J, Saint C P. 2008. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. J. Appl. Microbiol., 104: 1 503–1 515.

    Article  Google Scholar 

  • Reynolds C S, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24: 417–428.

    Article  Google Scholar 

  • Rinta-Kanto J M, Ouellette A J A, Boyer G L, Twiss M R, Bridgeman T B, Wilhelm S W. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol., 39: 4 198–4 205.

    Article  Google Scholar 

  • Rinta-Kanto J M, Wilhelm S W. 2006. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Appl. Environ. Microbiol., 72: 5 083–5 085.

    Article  Google Scholar 

  • Rinta-Kanto J M, Konopko E, DeBruyn J M, Bourbonniere R A, Boyer G L, Wilhelm S W. 2009a. Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8: 665–673.

    Article  Google Scholar 

  • Rinta-Kanto J M, Saxton M A, DeBruyn J M, Smith J L, Marvin C H, Krieger K A, Sayler G S, Boyer G L, Wilhelm S W. 2009b. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae, 8: 385–394.

    Article  Google Scholar 

  • Robarts R D, Zohary T. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zeal. J. Mar. Freshwater Res., 21: 391–399.

    Article  Google Scholar 

  • Runnegar M T, Kong S M, Zhong Y Z, Ge J L, Lu S C. 1994. The role of glutathione in the toxicity of a novel cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochemical and Biophysical Research Communications, 201: 235–241.

    Article  Google Scholar 

  • Runnegar M T, Kong S M, Zhong Y Z, Lu S C. 1995. Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem. Pharmacol., 49: 219–225.

    Article  Google Scholar 

  • Runnegar M T, Xie C, Snider B B, Wallace G A, Weinreb S M, Kuhlenkamp J. 2002. In vitro hepatotoxicity of the cyanobacterial alkaloid cylindrospermopsin and related synthetic analogues. Toxicol. Sci., 67: 81–87.

    Article  Google Scholar 

  • Saker M L. 2000. Cyanobacterial Blooms in Tropical North Queensland Water Bodies. Ph. D. Thesis. James Cook University, Townsville, Australia.

    Google Scholar 

  • Saker M L, Neilan B A, Griffiths D J. 1999. Two morphological forms of Cylindrospermopsis raciborskii (cyanobacteria) isolated from Solomon Dam, Palm Island, Queensland. J. Phycol., 35: 599–606.

    Article  Google Scholar 

  • Saker M L, Griffiths D J. 2000. The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia, 39: 349–354.

    Article  Google Scholar 

  • Saker M L, Neilan B A. 2001. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia. Appl. Microbiol., 67: 1 839–1 845.

    Google Scholar 

  • Saker M L, Nogueira I R, Vasconcelos V M, Neilan B A, Eaglesham G K, Pereira P. 2003. First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicol. Environ. Saf., 55: 243–250.

    Article  Google Scholar 

  • Schembri M A, Neilan B A, Saint C P. 2001. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol., 16: 413–421.

    Article  Google Scholar 

  • Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G. 2007. First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae, 6: 73–80.

    Article  Google Scholar 

  • Shafik H M, Herodek S, Présing M, Voros L. 2001. Factors affecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Algological Studies, 103: 74–103.

    Google Scholar 

  • Spröber P, Shafik H M, Présing M, Kovács A W, Herodek S. 2003. Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions. Hydrobiologia, 506-509: 169–174.

    Article  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan B A. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetise system. Chem. Biol., 7: 753–764.

    Article  Google Scholar 

  • Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K. 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb. Ecol., 43: 443–454.

    Article  Google Scholar 

  • Visser P M, Ibelings B W, Van Der Veer B, Koedood J, Mur L R. 1996. Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshwater Biol., 36: 435–450.

    Article  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 152: 473–484.

    Article  Google Scholar 

  • Wiedner C, Rücker J, Fastner J, Chorus I, Nixdorf B. 2008. Seasonal changes of cylindrospermopsin and cyanobacteria in two German lakes. Toxicon, 52: 677–686.

    Article  Google Scholar 

  • Wood S A, Stirling D J. 2003. First identification of the cylindrospermopsin producing cyanobacterium Cylindrospermopsis raciborskii in New Zealand. New Zeal. J. Mar. Freshwater Res., 37: 821–828.

    Article  Google Scholar 

  • Ye W, Liu X, Tan J, Li D, Yang H. 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae, 8: 637–644.

    Article  Google Scholar 

  • Yılmaz M, Phlips E J, Szabo N J, Badylak S. 2008. A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production. Toxicon, 51: 130–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele A. Burford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burford, M.A., Davis, T.W. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii . Chin. J. Ocean. Limnol. 29, 883–891 (2011). https://doi.org/10.1007/s00343-011-0517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0517-5

Keyword

Navigation