Skip to main content
Log in

Temporal stability of Symbiodinium phylotype in scleractinian coral Galaxea fascicularis from a tropical fringing reef in the South China Sea

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Symbiodinium sp. occurs in a symbiotic association with various marine invertebrates, including the scleractinian corals. Understanding the flexibility and specificity in coral-algal symbiosis can have important implications for predicting the future of coral reefs in the era of global climate change. In the present study, we conducted Symbiodinium phylotype analysis, based on polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP), in the scleractinian coral, Galaxea fascicularis, from a tropical fringing reef in Hainan Island, over a 1-yr period. Our results showed that Galaxea fascicularis could associate with Symbiodinium clade C and D either individually or simultaneously. However, during the sampling period, the Symbiodinium phylotype did not change significantly in the scleractinian coral Galaxea fascicularis, although the seawater temperature decreased sharply in the winter season. This study further suggests that the shift in Symbiodinium communities in response to seasonally fluctuating environments might not be a universal feature of coral-algal associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker A C. 2001. Ecosystems — reef corals bleach to survive change. Nature, 411: 765–766.

    Article  Google Scholar 

  • Baker A C. 2003. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. S., 34: 661–689.

    Article  Google Scholar 

  • Berkelmans R, Oliver J K. 1999. Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs, 18: 55–60.

    Article  Google Scholar 

  • Berkelmans R, van Oppen M J H. 2006. The role of zooxanthellae in the thermal tolerance of corals: A ‘nugget of hope’ for coral reefs in an era of climate change. P. Roy. Soc. B-Biol. Sci., 273: 2 305–2 312.

    Article  Google Scholar 

  • Brown B E, Dunne R P, Warner M E, Ambarsari I, Fitt W K, Gibb S W, Cummings D G. 2000. Damage and recovery of photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar. Ecol. Prog. Ser., 195: 117–124.

    Article  Google Scholar 

  • Buddemeier R W, Fautin D G. 1993. Coral bleaching as an adaptive mechanism—a testable hypothesis. Bioscience, 43: 320–326.

    Article  Google Scholar 

  • Chen C A, Yu J K. 2000. Universal primers for amplification of mitochondrial small subunit ribosomal RNA-encoding gene in scleractinian corals. Mar. Biotech. 2: 146–153.

    Google Scholar 

  • Chen C A, Wang A T, Fang L S, Yang Y W. 2005. Fluctuating algal symbiont communities in Acropora palifera (scleractinia: Acroporidae) from Taiwan. Mar. Ecol. Prog. Ser., 295: 113–121.

    Article  Google Scholar 

  • Diekmann O E, Bak R P M, Tonk L, Stam W T, Olsen J L. 2002. No habitat correlation of zooxanthellae in the coral genus Madracis on a Curacao reef. Mar. Ecol. Prog. Ser., 227: 221–232.

    Article  Google Scholar 

  • Dong Z J, Huang H, Huang L M, Li Y C. 2009. Diversity of symbiotic algae of the genus Symbiodinium in scleractinian corals of the Xisha Islands in the South China Sea. J. Syst. Evol., 47: 321–326.

    Article  Google Scholar 

  • Douglas A E. 2003. Coral bleaching — how and why? Mar. Pollut. Bull., 46: 385–392.

    Article  Google Scholar 

  • Freudenthal H D. 1962. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov, a zooxanthellataxonomy, life cycle, and morphology. J. Protozool., 9: 45–52.

    Google Scholar 

  • Glynn P W. 1996. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol., 2: 495–509.

    Article  Google Scholar 

  • Glynn P W, Mate J L, Baker A C, Calderon M O. 2001. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation Event: Spatial/temporal patterns and comparisons with the 1982–1983 event. B. Mar. Sci., 69: 79–109.

    Google Scholar 

  • Goulet T L. 2006. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser., 321: 1–7.

    Article  Google Scholar 

  • Goulet T L, LaJeunesse T C, Fabricius K E. 2008. Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Mar. Biol., 154: 795–804.

    Article  Google Scholar 

  • Hoegh-Guldberg O, Salvat B. 1995. Periodic mass-bleaching and elevated sea temperatures bleaching of outer reef slope communities in Moorea, French-Polynesia. Mar. Ecol. Prog. Ser., 121: 181–190.

    Article  Google Scholar 

  • Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res., 50: 839–866.

    Article  Google Scholar 

  • Huang H, Dong Z J, Huang L M, Zhang J B. 2006. Restriction fragment length polymorphism analysis of large subunit rDNA of symbiotic dinoflagellates from scleractinian corals in the Zhubi coral reef of the Nansha Islands. J. Integr. Plant Biol., 48: 148–152.

    Article  Google Scholar 

  • Huang H, Dong Z J, Huang L M, Yang J H, Di B P, Li Y C, Zhou G W, Zhang C L. 2011. Latitudinal variation in algal symbionts within the scleractinian coral Galaxea fascicularis in the South China Sea. Mar. Biol. Res., 7: 208–211.

    Article  Google Scholar 

  • Jones A M, Berkelmans R, van Oppen M J H, Mieog J C, Sinclair W. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: Field evidence of acclimatization. P. Roy. Soc. B-Biol. Sci., 275: 1 359–1 365.

    Google Scholar 

  • Kirk N L, Ward J R, Coffroth M A. 2005. Stable Symbiodinium composition in the sea fan Gorgonia ventalina during temperature and disease stress. Biol. Bull., 209: 227–234.

    Article  Google Scholar 

  • LaJeunesse T C, Thornhill D J, Cox E F, Stanton F G, Fitt W K, Schmidt G W. 2004. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs, 23: 596–603.

    Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R. 2001. Coral bleaching: The winners and the losers. Ecol. Lett., 4: 122–131.

    Article  Google Scholar 

  • Muscatine L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z ed. Ecosystems of the World, Coral Reefs. Elsevier, Amsterdam. p.75–87.

    Google Scholar 

  • Pochon X, Gates R D. 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Mol. Phylogenet. Evol., 56: 492–497.

    Article  Google Scholar 

  • Rowan R. 2004. Coral bleaching — thermal adaptation in reef coral symbionts. Nature, 430: 742.

    Article  Google Scholar 

  • Rowan R, Powers D A. 1991. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science, 251: 1 348–1 351.

    Article  Google Scholar 

  • Sampayo E M, Ridgway T, Bongaerts P, Hoegh-Guldberg O. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. P. Natl. Acad. Sci. USA, 105: 10 444–10 449.

    Article  Google Scholar 

  • Santos S R, Taylor D J, Kinzie R A, Hidaka M, Sakai K, Coffroth M A. 2002. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol. Phylogenet. Evol., 23: 97–111.

    Article  Google Scholar 

  • Stat M, Loh W K W, LaJeunesse T C, Hoegh-Guldberg O, Carter D A. 2009. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs, 28: 709–713.

    Article  Google Scholar 

  • Thornhill D J, Daniel M W, LaJeunesse T C, Schmidt G W, Fitt W K. 2006a. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Biol. Ecol., 338: 50–56.

    Article  Google Scholar 

  • Thornhill D J, Fitt W K, Schmidt G W. 2006b. Highly stable symbioses among western Atlantic brooding corals. Coral Reefs, 25: 515–519.

    Article  Google Scholar 

  • van Oppen M J H, Palstra F P, Piquet A M T, Miller D J. 2001. Patterns of coral-dinoflagellate associations in Acropora: Significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. P. Roy. Soc. B-Biol. Sci., 268: 1 759–1 767.

    Google Scholar 

  • Van Oppen M J H, Mahiny A J, Done T J. 2005. Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs, 24: 482–487.

    Article  Google Scholar 

  • Zhang H, Lin S. 2005. Development of a cob-18S rRNA gene real-time PCR assay for quantifying Pfiesteria shumwayae in the natural environment. Appl. Environ. Microbiol., 71: 7 053–7 063.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang  (黄晖).

Additional information

Supported by the National Natural Science Foundation of China (No. 40830850), and the Knowledge Innovation of Chinese Academy of Sciences (No. KZCX2-YW-227)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Huang, H., Dong, Z. et al. Temporal stability of Symbiodinium phylotype in scleractinian coral Galaxea fascicularis from a tropical fringing reef in the South China Sea. Chin. J. Ocean. Limnol. 29, 1186–1191 (2011). https://doi.org/10.1007/s00343-011-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0301-6

Keyword

Navigation