Skip to main content
Log in

Metagenome of microorganisms associated with the toxic Cyanobacteria Microcystis aeruginosa analyzed using the 454 sequencing platform

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this study, the 454 pyrosequencing technology was used to analyze the DNA of the Microcystis aeruginosa symbiosis system from cyanobacterial algal blooms in Taihu Lake, China. We generated 183 228 reads with an average length of 248 bp. Running the 454 assembly algorithm over our sequences yielded 22 239 significant contigs. After excluding the M. aeruginosa sequences, we obtained 1 322 assembled contigs longer than 1 000 bp. Taxonomic analysis indicated that four kingdoms were represented in the community: Archaea (n = 9; 0.01%), Bacteria (n = 98 921; 99.6%), Eukaryota (n = 373; 3.7%), and Viruses (n = 18; 0.02%). The bacterial sequences were predominantly Alphaproteobacteria (n = 41 805; 83.3%), Betaproteobacteria (n = 5 254; 10.5%) and Gammaproteobacteria (n = 1 180; 2.4%). Gene annotations and assignment of COG (clusters of orthologous groups) functional categories indicate that a large number of the predicted genes are involved in metabolic, genetic, and environmental information processes. Our results demonstrate the extraordinary diversity of a microbial community in an ectosymbiotic system and further establish the tremendous utility of pyrosequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleya L, Michard M, Khattabi H, Devaux J. 2006. Coupling of the biochemical composition and calorific ocntent of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Environ. Technol., 27(11): 1 181–1 190.

    Article  Google Scholar 

  • Baptista M S, Vasconcelos M T. 2006. Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit. Rev. Microbiol., 32(3): 127–137.

    Article  Google Scholar 

  • Berg K A, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. Isme Journal, 3(3): 314–325.

    Article  Google Scholar 

  • Bourne D G, Riddles P, Jones G J, Smith W, Blakeley R L. 2001. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol., 16(6): 523–534.

    Article  Google Scholar 

  • Eiler A, Bertilsson S. 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12): 1 228–1 243.

    Article  Google Scholar 

  • Ewing B, Green P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8(3): 186–194.

    Google Scholar 

  • Fuhrman J A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399(6 736): 541–548.

    Article  Google Scholar 

  • Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res., 8(3): 195–202.

    Google Scholar 

  • Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K. 2004. Isolation of Adda from microcystin-LR by microbial degradation. Toxicon., 44(1): 107–109.

    Article  Google Scholar 

  • Ho L, Hoefel D, Saint C P, Newcombe G. 2007. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res., 41(1): 4 685–4 695.

    Google Scholar 

  • Huber H, Hohn M J, Rachel R, Fuchs T, Wimmer V C, Stetter K O. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417(6 884): 63–67.

    Article  Google Scholar 

  • Ishii H, Nishijima M, Abe T. 2004. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Res., 38(11): 2 667–2 676.

    Article  Google Scholar 

  • Ishii K. Fukui M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and Environmental Microbiology, 67(8): 3 753–3 755.

    Article  Google Scholar 

  • Jiang L J, Yang L Y, Xiao L, Shi X L, Gao G, Qin B. 2007. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia, 581: 161–165.

    Article  Google Scholar 

  • Juliana C R, Renan B D, Luis F D B C, Eduardo V C, Edmar C S, Andrea M A N. 2009. Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl. Microbiol. Biotechnol., 84(4): 777–789.

    Article  Google Scholar 

  • Kroes I, Lepp P W, Relman D A. 1999. Bacterial diversity within the human subgingival crevice. Proceedings of the National Academy of Sciences of the United States of America, 96(25): 14 547–14 552.

    Article  Google Scholar 

  • Mackenzie C, Eraso J M, Choudhary M, Roh J H, Zeng X H, Bruscella P, Puskas A, Kaplan S. 2007. Postgenomic adventures with Rhodobacter sphaeroides. Annual Review of Microbiology, 61: 283–307.

    Article  Google Scholar 

  • Maruyama T, Kato K, Yokoyama A, Tanaka T, Hiraishi A, Park H D. 2003. Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microbial Ecology, 46: 279–288.

    Article  Google Scholar 

  • Paerl H. 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv. Exp. Med. Biol., 619: 217–237.

    Article  Google Scholar 

  • Petrie L, North N N, Dollhopf S L, Balkwill D L, Kostka J E. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Applied and Environmental Microbiology, 69(12): 7 467–7 479.

    Article  Google Scholar 

  • Pope P B, Patel B K. 2008. Metagenomic analysis of a freshwater toxic cyanobacteria bloom. FEMS Microbiol. Ecol., 64(1): 9–27.

    Article  Google Scholar 

  • Saito T, Okano K, Park H D, Itayama T, Inamori Y, Neilan B A, Burns B P, Sugiura N. 2003. Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol. Lett., 229(2): 271–276.

    Article  Google Scholar 

  • Sedmak B, Elersek T. 2005. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb. Ecol., 50(4): 298–305.

    Article  Google Scholar 

  • Valeria A M, Ricardo E J, Stephan P, Alberto W D. 2006. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba — Argentina). Biodegradation, 17(5): 447–455.

    Article  Google Scholar 

  • Wang G C Y, Wang Y. 1997. Frequency of formation of chimeric molecules is a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology, 63(12): 4 645–4 650.

    Google Scholar 

  • Webster N S, Wilson K J, Blackall L L, Hill R T. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 67(1): 434–444.

    Article  Google Scholar 

  • Weng L, Rubin E M, Bristow J. 2006. Application of sequence-based methods in human microbial ecology. Genome Research, 16: 316–322.

    Article  Google Scholar 

  • Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 72(2): 1 239–1 247.

    Google Scholar 

  • Zhang X, Hu H Y, Men Y J, Yang J, Christoffersen K. 2009. Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa. Water Res., 43(12): 2 953–2 960.

    Article  Google Scholar 

  • Zurawell R W, Chen H R, Burke J M, Prepas E E. 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 8(1): 1–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin  (秦松).

Additional information

Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KSCX2-YW-G-073)

LI Nan and ZHANG Lei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Zhang, L., Li, F. et al. Metagenome of microorganisms associated with the toxic Cyanobacteria Microcystis aeruginosa analyzed using the 454 sequencing platform. Chin. J. Ocean. Limnol. 29, 505–513 (2011). https://doi.org/10.1007/s00343-011-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0056-0

Keyword

Navigation