Skip to main content
Log in

Recover vigorous cells of Magnetospirillum magneticum AMB-1 by capillary magnetic separation

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Cultivable magnetotactic bacteria (MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies. However, a cold-stored MTB strain, such as Magnetospirillum magneticum AMB-1, often loses its ability to synthesize magnetosomes and consequently fails to sense the external magnetic field. It is therefore important to quickly recover vigorous bacteria cells that highly capable of magnetosome producing. In this study, a modified capillary magnetic separation system was designed to recover a deteriorating strain of Magnetospirillum magneticum AMB-1 that long-term cold-stored in a refrigerator. The results show that all cells obtained after a 3-cycle treatment were vigorous and had the ability to produce magnetosomes. Moreover, the 3rd-cycle recovered cells were able to form more magnetosome crystals. Compared with the colony formation method, this new method is time-saving, easily operated, and more efficient for recovering vigorous MTB cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahaj A S, Croudace I W, James P A B, Moeschler F D, Warwick P E. 1998. Continuous radionuclide recovery from wastewater using magnetotactic bacteria, J. Magn. Magn. Mater., 184(2): 241–244.

    Article  Google Scholar 

  • Bahaj A S, James P A B, Croudace I W. 1994. Metal uptake and separation using magnetotactic bacteria, IEEE Trans. Magn., 30(6): 4 707–4 709.

    Article  Google Scholar 

  • Bellini S. 2009. Further studies on “magnetosensitive bacteria”. Chin. J. Oceanol. Limnol., 27(1): 6–12.

    Article  Google Scholar 

  • Faivre D, Schüler D. 2008. Magnetotactic bacteria and magnetosomes. Chem. Rev., 108(11): 4 875–4 898.

    Article  Google Scholar 

  • Fukuda Y, Okamura Y, Takeyama H, Matsunaga T. 2006. Dynamic analysis of a genomic island in Magnetospirillum sp strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett., 580(3): 801–812.

    Article  Google Scholar 

  • Funaki M, Sakai H, Matsunaga T. 1989. Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria, J. Geomagn. Geoelectr., 41(1): 77–87.

    Google Scholar 

  • Harasko G, Pfutzner H, Futschik K. 1995. Domain analysis by means of magnetotactic bacteria, IEEE T. Magm., 31(2): 938–949.

    Article  Google Scholar 

  • Jogler C, Schüler D. 2006. Genetic analysis of magnetosome biomineralization. In: Schüler, D. ed. Magnetoreception and magnetosomes in bacteria. Sringer-Verlag press, Berlin. p. 133–161.

    Google Scholar 

  • Kalmijn A J. 1981. Biophysics of geomagnetic field detection, IEEE Trans. Magn., 17(1): 1 113–1 124.

    Article  Google Scholar 

  • Komeili A, Vali H, Beveridge T J, Newman D K. 2004. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation, Proc. Natl. Acad. Sci. U. S. A., 101(11): 3 839–3 844.

    Article  Google Scholar 

  • Li J H, Pan Y X, Chen G J, Liu Q S, Tian L X, Lin W. 2009. Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: transmission electron microscopy and magnetic observations. Geophys. J. Int., 177(1): 33–42.

    Article  Google Scholar 

  • Lin W, Li J H, Schüler D, Jogler C, Pan Y X. 2009. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism, Syst. Appl. Microbiol., In Press, Corrected Proof (doi:10.1016/j.syapm.2008.1010.1005

  • Lin W, Tian L X, Li J H, Pan Y X. 2008. Does capillary racetrack-based enrichment reflect the diversity of uncultivated magnetotactic cocci in environmental samples? FEMS Microbiol. Lett., 279(2): 202–206.

    Article  Google Scholar 

  • Lins U, Freitas F, Keim C, de Barros H, Esquivel D, Farina M. 2003. Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Braz. J. Microbiol., 34(2): 111–116.

    Article  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadokoro F. 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol., 35(5): 651–655.

    Article  Google Scholar 

  • Matsunaga T, Suzuki T, Tanaka M, Arakaki A. 2007. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol., 25(4): 182–188.

    Article  Google Scholar 

  • Pan H M, Zhu K L, Song T, Yu-Zhang K, Lefevre C, Xing S, Liu M, Zhao S J, Xiao T, Wu L F. 2008. Characterization of a homogeneous taxonomic group of marine magnetotactic cocci within a low tide zone in the China Sea. Environ. Microbiol., 10(5): 1 158–1 164.

    Article  Google Scholar 

  • Schüler D. 2008. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol. Rev., 32(4): 654–672.

    Article  Google Scholar 

  • Schultheiss D, Schüler D. 2003. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol., 179(2): 89–94.

    Google Scholar 

  • Seong S, Park T H. 2001. Swimming characteristics of magnetic bacterium, Magnetospirillum sp AMB-1, and implications as toxicity measurement. Biotechnol. Bioeng., 76(1): 11–16.

    Article  Google Scholar 

  • Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. 2005. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol., 187(21): 7 176–7 184.

    Article  Google Scholar 

  • Wolfe R S, Thauer R K, Pfennig N. 1987. A capillary racetrack method for isolation of magnetotactic bacteria. FEMS Microbiol. Ecol., 45(1): 31–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanjun Chen  (陈冠军).

Additional information

Supported by the Natural Science Foundation of Shandong Province, China (No. 2006ZRB01973), and the National Natural Science Foundation of China (Nos. 40821091, 40325011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ge, X., Zhang, X. et al. Recover vigorous cells of Magnetospirillum magneticum AMB-1 by capillary magnetic separation. Chin. J. Ocean. Limnol. 28, 826–831 (2010). https://doi.org/10.1007/s00343-010-9068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-010-9068-4

Keyword

Navigation