Skip to main content
Log in

Yb:Lu2O3 hydrothermally grown single-crystal high-resolution absorption spectra obtained between 8 and 300 K

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present new high-resolution absorption data for the important sesquioxide laser material Yb:Lu2O3 for the spectral range of 880–1020 nm, at various temperatures between 8 and 300 K, and for the zero-phonon region from 960 to 990 nm, at temperatures from 8 to 300 K. We have experimentally observed the C3i (0,1)–(1,3) transition for the first time, located at 880.7 nm at 8 K. Based on high confidence fitting functions to the experimental data, we provide the first complete compilation of all observed electronic and electronic–vibrational transitions. Detailed fitting and plots of the C2 and C3i zero-line data show an evolution of the linewidth from being predominantly electronic below about 100 K to being dominated by thermal processes above 100 K. We have also found evidence for a “soft” phase transition between 80 and 100 K that changes the local coordination environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S.A. Basun, Rare-earth-doped sesquioxides. J. Lumin. 87–89, 973–975 (2000)

    Article  Google Scholar 

  2. V. Peters, Growth and spectroscopy of ytterbium-doped sesquioxides, PhD Dissertation, University of Hamburg 2001

  3. K. Petermann, L. Fornasiero, E. Mix, V. Peters, High melting sesquioxides: crystal growth, spectroscopy, and laser experiments. Opt. Mater. 19, 67–71 (2002)

    Article  ADS  Google Scholar 

  4. R. Peters, C. Krankel, K. Petermann, G. Huber, Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express 15, 7076–7082 (2007)

    Article  ADS  Google Scholar 

  5. U. Grieber, V. Petrov, K. Petermann, V. Peters, Passively mode-locked Yb:Lu2O3 laser. Opt. Express 12, 3125–3130 (2004)

    Article  ADS  Google Scholar 

  6. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A.A. Kaminskii, Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser. Opt. Lett. 33, 1380–1382 (2008)

    Article  ADS  Google Scholar 

  7. N. Modsching, J. Drs, J. Fischer, C. Paradis, F. Labaye, M. Gaponenko, C. Krankel, V. Wittwer, T. Sudmeyer, Sub-100-fs Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating at 21 W average power. Opt. Express 27, 16111 (2019)

    Article  ADS  Google Scholar 

  8. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, A.A. Kaminskii, Lu2O3:Yb3+ ceramics—a novel gain material for high-power solid-state lasers. Phys. Stat. Solidi (a) 202, R1–R3 (2005)

    Article  ADS  Google Scholar 

  9. A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, T. Yanagitani, New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons. Laser Phys. Lett. 3, 375–379 (2006)

    Article  ADS  Google Scholar 

  10. A. Pirri, G. Toci, M. Vannini, First laser oscillation and broad tunability of 1 at% Yb- doped Sc2O3 and Lu2O3 ceramics. Opt. Lett. 36, 4284–4286 (2011)

    Article  ADS  Google Scholar 

  11. J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, I. Aggarwal, Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic. Opt. Mater. 33, 670–674 (2011)

    Article  ADS  Google Scholar 

  12. D. Yin, J. Ma, P. Liu, B. Yao, J. Wang, Z. Dong, L.B. Kong, D. Tang, Submicron-grained Yb:Lu2O3 transparent ceramics with lasing quality. J. Am. Ceram. Soc. 102, 2587–2592 (2019)

    Google Scholar 

  13. C. McMillen, D. Thompson, T. Tritt, J. Kolis, Hydrothermal single-crystal growth of Lu2O3 and lanthanide-doped Lu2O3. Cryst. Growth. Des. 11, 4386–4391 (2011)

    Article  Google Scholar 

  14. D.C. Brown, C.D. McMillen, C. Moore, J.W. Kolis, V. Envid, Spectral properties of hydrothermally-grown Nd:LuAG, Yb:LuAG, and Yb:Lu2O3 laser materials. J. Lumin. 148, 26–32 (2014)

    Article  Google Scholar 

  15. C.A. Moore, D.C. Brown, L.D. Sanjeewa, C.D. McMillen, J.W. Kolis, “Yb:Lu2O3 hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80 K. J. Lumin. 174, 29–35 (2016)

    Article  Google Scholar 

  16. C.D. McMillen, L.D. Sanjeewa, C.A. Moore, D.C. Brown, J.W. Kolis, Crystal growth and phase stability of Ln:Lu2O3 (Ln=Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in a higher temperature hydrothermal regime. J. Cryst. Growth 452, 146–150 (2016)

    Article  ADS  Google Scholar 

  17. M. Guzik, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, M. Siczek, T. Lis, G. Boulon, Structural investigations of Lu2O3 as single crystal and transparent ceramic. Cryst. Growth Des. 14, 3327–3334 (2014)

    Article  Google Scholar 

  18. D.E. Zelmon, J.M. Northridge, N.D. Haynes, D. Perlov, K. Petermann, Temperature-dependent Sellmeier equations for rare-earth sesquioxides. Appl. Opt. 52, 3824–3827 (2013)

    Article  ADS  Google Scholar 

  19. H.H. Li, J. Phys. Chem. Ref. Data 9, 161–289 (1980)

    Article  ADS  Google Scholar 

  20. M. Orrit, Single molecular spectroscopy, in Quantum optics and nanophysics, ed. by C. Fabry, V. Sandoghdan, N. Treps, L.F. Cugliandolo (Oxford University Press, Oxford, 2017)

    Google Scholar 

  21. Y. Guyot, M. Gusik, G. Alombert-Goget, J. Pejchl, A. Yoshikawa, A. Ito, T. Goto, G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal. J. Lumin. 170, 513–519 (2016)

    Article  Google Scholar 

  22. A. Lupei, A. Lupei, C. Presura, V.N. Enaki, A. Petraru, Electron-phonon coupling effects on Yb3+ spectra in several laser crystals. J. Phys. Condens. Matter 11, 3769–3778 (1999)

    Article  ADS  Google Scholar 

  23. L. Laversenne, Y. Guyot, C. Goutaudier, MTh Cohen-Adad, G. Boulon, Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3, and monoclinic Gd2O3. Opt. Mater. 16, 475–483 (2001)

    Article  ADS  Google Scholar 

  24. M.V. Abrashev, N.D. Todorov, J. Geshev, Raman spectra of R2O3 (R-rare earth) sesquioxides with C-type bixbyite crystal structure: a comparative study. J. Appl. Phys. 116, 103508-1–103508-6 (2014)

    Article  ADS  Google Scholar 

  25. M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3 sesquioxide either as ceramics or crystal. J. Lumin. 169, 606–611 (2016)

    Article  Google Scholar 

  26. S. Geller, Structures of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Cryst. B27, 821–828 (1971)

    Article  Google Scholar 

  27. L. Pauling, M. Shappell, The crystal structure of bixbyite and the C-modification of the sesquioxides. Z. Kristallogr. 75, 128–142 (1930)

    Google Scholar 

  28. H. Kohlmann, The crystal structure of cubic C-type samarium sesquioxide, Sm2O3. Z. Naturforsch. B 74, 433–435 (2019)

    Article  Google Scholar 

  29. L.D. Merkle, G.A. Newburgh, N. Ter-Gabrielyan, A. Michael, M. Dubinskii, Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3. Opt. Commun. 281, 5855–5861 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at Clemson was supported by the National Science Foundation through grant NSF DMR-1808371

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.C., Fleischman, Z., Merkle, L.D. et al. Yb:Lu2O3 hydrothermally grown single-crystal high-resolution absorption spectra obtained between 8 and 300 K . Appl. Phys. B 126, 62 (2020). https://doi.org/10.1007/s00340-020-7412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7412-8

Navigation