Skip to main content
Log in

Multiple-image encryption scheme based on ghost imaging of Hadamard matrix and spatial multiplexing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper proposes a multi-image encryption method based on ghost imaging of Hadamard basis patterns and spatial multiplexing. In the encryption process, firstly, the pixels of each original image are rearranged in ascending order, and then each image rearranged is transformed by Fourier transformation. Most of the spectral information of the images after Fourier transformation is concentrated in the central part, which is sampled by spectrum clipping. Multiple sampled images are combined into one image by spatial multiplexing technology after inverse operation of Fourier transformation is performed. Finally, the combined image is encrypted by ghost imaging using Hadamard basis patterns to obtain ciphertext. In the decryption process, the original plaintext images are reconstructed by compressive sensing algorithm using Hadamard basis patterns and the position index matrices of each original image. We prove the safety and robustness of the proposed method through numerical simulation analysis. Theoretical analysis and numerical simulation analysis prove the safety and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Chen, B. Javidi, X. Chen, Advances in optical security systems. Adv. Opt. Photonics 6(2), 120–155 (2014)

    Article  ADS  Google Scholar 

  2. O. Matoba, T. Nomura, E. Perez-Cabre et al., Optical techniques for information security. Proc. IEEE 97(6), 1128–1148 (2009)

    Article  Google Scholar 

  3. S. Jiang, Y. Wang, T. Long et al., Information security scheme based on computational temporal ghost imaging. Sci. Rep. 7(1), 7676 (2017)

    Article  ADS  Google Scholar 

  4. T. Zhao, Q. Ran, L. Yuan et al., Security of image encryption scheme based on multi-parameter fractional Fourier transform. Opt. Commun. 376, 47–51 (2016)

    Article  ADS  Google Scholar 

  5. P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20(7), 767–769 (1995)

    Article  ADS  Google Scholar 

  6. J.X. Chen, Z.L. Zhu, C. Fu et al., Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding. J. Opt. 16(12), 125403 (2014)

    Article  ADS  Google Scholar 

  7. X.B. Liu, W.B. Mei, H.Q. Du, Optical image encryption based on compressive sensing and chaos in the fractional Fourier domain. J. Mod. Opt. 61(19), 1570–1577 (2014)

    Article  ADS  Google Scholar 

  8. W. Chen, X. Wang, X. Chen, Optical information authentication using compressed double-random-phase-encoded images and quick-response codes. Opt. Express 23(5), 6239–6253 (2015)

    Article  ADS  Google Scholar 

  9. A. Alfalou, C. Brosseau, Optical image compression and encryption method. Adv. Opt. Photonics 1(3), 589–636 (2019)

    Article  ADS  Google Scholar 

  10. W. Zamrani, E. Ahouzi, A. Lizana et al., Optical image encryption technique based on deterministic phase masks. Opt. Eng. 55(10), 103108 (2016)

    Article  ADS  Google Scholar 

  11. N.R. Zhou, Y.X. Wang, L.H. Gong, Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284(13), 3234–3242 (2011)

    Article  ADS  Google Scholar 

  12. W. Qin, X. Peng, Vulnerability to known-plaintext attack of optical encryption schemes based on two fractional Fourier transform order keys and double random phase keys. J. Opt. A Pure Appl. Opt. 11(7), 075402 (2009)

    Article  ADS  Google Scholar 

  13. H. Liu, D. Xiao, Y.B. Liu et al., Securely compressive sensing using double random phase encoding. Optik 126(20), 2663–2670 (2015)

    Article  ADS  Google Scholar 

  14. X.F. Meng, L.Z. Cai, X.F. Xu et al., Two-step phase-shifting interferometry and its application in image encryption. Opt. Lett. 31(10), 1414–1416 (2006)

    Article  ADS  Google Scholar 

  15. S.K. Rajput, N.K. Nishchal, Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt. 52(4), 871–878 (2013)

    Article  ADS  Google Scholar 

  16. J. Wu, W. Liu, Z. Liu et al., Correlated-imaging-based chosen plaintext attack on general cryptosystems composed of linear canonical transforms and phase encodings. Opt. Commun. 338, 164–167 (2015)

    Article  ADS  Google Scholar 

  17. O. Katz, Y. Bromberg, Y. Silberberg, Compressive ghost imaging. Appl. Phys. Lett. 95(13), 131110 (2009)

    Article  ADS  Google Scholar 

  18. M. Tanha, S. Ahmadi-Kandjani, R. Kheradmand et al., Computational fluorescence ghost imaging. Eur. Phys. J. D 67(2), 44 (2013)

    Article  ADS  Google Scholar 

  19. Y. Bromberg, O. Katz, Y. Silberberg, Ghost imaging with a single detector. Phys. Rev. A. 79(5), 053840 (2009)

    Article  ADS  Google Scholar 

  20. N. Radwell, K.J. Mitchell, G.M. Gibson et al., Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)

    Article  Google Scholar 

  21. Z. Zhang, X. Ma, J. Zhong, Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015)

    Article  ADS  Google Scholar 

  22. J.J. Wu, Z.W. Xie, Z.J. Liu et al., Multiple-image encryption based on computational ghost imaging. Opt. Commun. 359, 38–43 (2016)

    Article  ADS  Google Scholar 

  23. S.M. Zhao et al., Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photonics Res. 4(6), 240–244 (2016)

    Article  Google Scholar 

  24. S. Yuan, Y.R. Yang, X.M. Liu, Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging. Opt. Lasers Eng. 100, 105–110 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Natural Science Foundation of Shanghai (Grant no. 18ZR1425800), the Open Project of Anhui Province Key Laboratory of Nondestructive Evaluation (Grant no. CGHBMWSJC03), and the National Natural Science Foundation of China (Grant no. 61875125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leihong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Zhang, L., Chen, J. et al. Multiple-image encryption scheme based on ghost imaging of Hadamard matrix and spatial multiplexing. Appl. Phys. B 125, 174 (2019). https://doi.org/10.1007/s00340-019-7286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7286-9

Navigation