Skip to main content
Log in

Multipass cryogenic Yb:Y2O3 ceramic disk amplifier

  • Original Article
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The features of laser radiation amplification in Yb:Y2O3 ceramic disk active elements have been studied. The first multipass disk pulse-periodic amplifier with a cryogenically cooled Yb:Y2O3 ceramic active element has been created. Its average output power is 15.8 W at a pulse repetition rate of 11.5 kHz, pulse duration 0.5 ns, and spectral width 1.2 nm. The results obtained demonstrate the potential of broadband radiation amplification with subsequent compression to the subpicosecond range of pulse durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.A. Reagan, M. Berrill, K.A. Wernsing, C. Baumgarten, M. Woolston, J.J. Rocca, High-average-power, 100-Hz-repetition-rate, tabletop soft-X-ray lasers at sub-15-nm wavelengths. Phys. Rev. A 89, 053820 (2014)

    Article  ADS  Google Scholar 

  2. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J.A. Fülöp, P. Baum, 800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3. Opt. Lett. 39, 6604–6607 (2014)

    Article  ADS  Google Scholar 

  3. P. Mason, M. Divoký, K. Ertel, J. Pilař, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. De Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, J. Collier, Kilowatt average power 100 J-level diode pumped solid state laser. Optica 4, 438–439 (2017)

    Article  Google Scholar 

  4. L.E. Zapata, H. Lin, A.-L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W.R. Huang, E. Granados, K.-H. Hong, F.X. Kärtner, Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. Opt. Lett. 40, 2610–2613 (2015)

    Article  ADS  Google Scholar 

  5. C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C.S. Menoni, J.J. Rocca, B.A. Reagan, 1 J, 0.5 kHz repetition rate picosecond laser. Opt. Lett. 41, 3339–3342 (2016)

    Article  ADS  Google Scholar 

  6. J. Kawanaka, S.J. Pearce, R. Yasuhara, T. Kawashima, H. Kan, High energy, diode-pumped Yb-doped solid-state lasers for inertial fusion drivers, in LEOS 200821st Annual Meeting of the IEEE Lasers and Electro-Optics Society, (IEEE, 2008), pp. 777–778

  7. E.A. Perevezentsev, I.B. Mukhin, I.I. Kuznetsov, O.V. Palashov, E.A. Khazanov, Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate. Quantum Electron. 43, 207–210 (2013)

    Article  ADS  Google Scholar 

  8. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A.A.J. Biegert, High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics 9, 721–724 (2015)

    Article  ADS  Google Scholar 

  9. F. Emaury, A. Diebold, C. Saraceno, U. Keller, Oscillator-driven high harmonic generation, in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), p. ATu4A.5

  10. http://www.hilase.cz/

  11. W.S. Graves, J. Bessuille, P. Brown, S. Carbajo, V. Dolgashev, K.H. Hong, E. Ihloff, B. Khaykovich, H. Lin, K. Murari, E.A. Nanni, G. Resta, S. Tantawi, L.E. Zapata, F.X. Kärtner, D.E. Moncton, Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys. Rev. Spec. Top. Accel. Beams 17, 120701 (2014)

    Article  ADS  Google Scholar 

  12. C.-L. Chang, P. Krogen, H. Liang, G.J. Stein, J. Moses, C.-J. Lai, J.P. Siqueira, L.E. Zapata, F.X. Kärtner, K.-H. Hong, Multi-mJ, kHz, ps deep-ultraviolet source. Opt. Lett. 40, 665–668 (2015)

    Article  ADS  Google Scholar 

  13. S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, A. Tünnermann, High photon flux table-top coherent extreme-ultraviolet source. Nat. Photonics 8, 779 (2014)

    Article  ADS  Google Scholar 

  14. V. Petrov, Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources. Opt. Mater. 34, 536–554 (2012)

    Article  ADS  Google Scholar 

  15. Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, A. Sugiyama, Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation. Opt. Express 23, 15057–15064 (2015)

    Article  ADS  Google Scholar 

  16. D. Rand, D. Miller, D.J. Ripin, T.Y. Fan, Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited]. Opt. Mater. Express 1, 434–450 (2011)

    Article  ADS  Google Scholar 

  17. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, 23.7-W picosecond cryogenic-Yb:YAG multipass amplifier. Opt. Express 15, 3955–3961 (2007)

    Article  ADS  Google Scholar 

  18. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F.Ö. Ilday, T.Y. Fan, F.X. Kärtner, Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Opt. Lett. 33, 2473–2475 (2008)

    Article  ADS  Google Scholar 

  19. K.-H. Hong, J.T. Gopinath, D. Rand, A.M. Siddiqui, S.-W. Huang, E. Li, B.J. Eggleton, J.D. Hybl, T.Y. Fan, F.X. Kärtner, High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. Opt. Lett. 35, 1752–1754 (2010)

    Article  ADS  Google Scholar 

  20. K. Kowalewski, J. Zembek, V. Envid, D.C. Brown, 201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system. Opt. Lett. 37, 4633–4635 (2012)

    Article  ADS  Google Scholar 

  21. L.E. Zapata, F. Reichert, M. Hemmer, F.X. Kärtner, 250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping. Opt. Lett. 41, 492–495 (2016)

    Article  ADS  Google Scholar 

  22. C.P. João, J. Körner, M. Kahle, H. Liebetrau, R. Seifert, M. Lenski, S. Pastrik, J. Hein, T. Gottschall, J. Limpert, G. Figueira, V. Bagnoud, High-power Yb:KYW picosecond regenerative amplifier for optical parametric amplifier pumping, in International Conference on Applications of Optics and Photonics, (SPIE, 2011)

  23. G.-H. Kim, J. Yang, B. Lee, B. Jeong, S. Chizhov, E. Sall, V. Yashin, G. Kang, High-power diode-pumped short pulse lasers based on Yb:KGW crystals for industrial applications, in High Energy and Short Pulse Lasers, ed. by R. Viskup (InTech, Rijeka, 2016), p. 2

    Google Scholar 

  24. G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, A. Pugzlys, 220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier, in CLEO: Science and Innovations 2015, (Optical Society of America, San Jose, California United States, 2015), p. SM1P.7

  25. L.D. Merkle, G. Alex Newburgh, N. Ter-Gabrielyan, A. Michael, M. Dubinskii, Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3. Opt. Commun. 281, 5855–5861 (2008)

    Article  ADS  Google Scholar 

  26. A. Pirri, G. Toci, M. Vannini, First laser oscillation and broad tunability of 1 at.% Yb-doped Sc2O3 and Lu2O3 ceramics. Opt. Lett. 36, 4284–4286 (2011)

    Article  ADS  Google Scholar 

  27. J. Kong, D.Y. Tang, J. Lu, K. Ueda, Spectral characteristics of a Yb-doped Y2O3 ceramic laser. Appl. Phys. B 79, 449–455 (2004)

    Article  Google Scholar 

  28. A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.F. Bisson, J. Lu, K. Ueda, T. Yanagitani, A.A. Kaminskii, First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser. Laser Phys. 14, 1375–1381 (2004)

    Google Scholar 

  29. M. Maruyama, H. Okada, Y. Ochi, K. Nagashima, Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk. Opt. Express 24, 1685–1692 (2016)

    Article  ADS  Google Scholar 

  30. E. Caracciolo, S.D. Di Dio Cafiso, F. Pirzio, M. Kemnitzer, M. Gorjan, A. Guandalini, F. Kienle, A. Agnesi, J. Aus der Au, High power femtosecond Yb:Lu2O3 amplifier and sub-100 fs Yb:Lu2O3 oscillator, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), p. SF2I.6

  31. E. Caracciolo, F. Pirzio, M. Kemnitzer, A. Guandalini, F. Kienle, A. Agnesi, J. Aus-der-Au, “Performance of the Yb:Lu2O3 laser crystal in diode-pumped femtosecond oscillators and high-power regenerative amplifiers, in Solid State Lasers XXV: Technology and Devices, (SPIE, 2016), p. 97260Z

  32. M. Tokurakawa, A. Shirakawa, K.-I. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii, K. Beil, C. Kränkel, G. Huber, Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser. Opt. Express 20, 10847–10853 (2012)

    Article  ADS  Google Scholar 

  33. V. Peters, Growth and Spectroscopy of Ytterbium-Doped Sesquioxides, Dissertation (Shaker Verlag, Aachen, 2001)

    Google Scholar 

  34. M.R. Volkov, I.I. Kuznetsov, I.B. Mukhin, A new method of diagnostics of the quality of heavily Yb-doped laser media. IEEE J. Quantum Electron. 54, 1–6 (2018)

    Article  Google Scholar 

  35. H. Kühn, S.T. Fredrich-Thornton, C. Kränkel, R. Peters, K. Petermann, Model for the calculation of radiation trapping and description of the pinhole method. Opt. Lett. 32, 1908–1910 (2007)

    Article  ADS  Google Scholar 

  36. J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. J. Opt. Soc. Am. B 20, 1975–1979 (2003)

    Article  ADS  Google Scholar 

  37. G. Boulon, V. Lupei, Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals. J. Lumin. 125, 45–54 (2007)

    Article  Google Scholar 

  38. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, T. Dekorsy, Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry. Opt. Lett. 33, 726–728 (2008)

    Article  ADS  Google Scholar 

  39. E. Perevezentsev, I. Kuznetsov, I. Mukhin, O.V. Palashov, Matrix multi-pass scheme disk amplifier. Appl. Opt. 56, 8471–8476 (2017)

    Article  ADS  Google Scholar 

  40. K. Creath, Phase-measurement interferometry techniques. Progr. Opt. 26, 349–393 (1989)

    Article  ADS  Google Scholar 

  41. J. Körner, J. Hein, M.C. Kaluza, Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers. Appl. Sci. 6, 353 (2016)

    Article  Google Scholar 

  42. J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, M. Kaluza, Cryogenically cooled laser amplifiers, in 7th HEC-DPSSL Workshop (Tahoe City CA USA, 2012)

  43. M.R. Volkov, I.I. Kuznetsov, I.B. Mukhin, O.V. Palashov, A.V. Konyashchenko, S.Y. Tenyakov, R.A. Liventsov, Thin-rod active elements for amplification of femtosecond pulses. Quantum Electron. 49, 350–353 (2019)

    Article  ADS  Google Scholar 

  44. I.I. Kuznetsov, I.B. Mukhin, O.V. Palashov, Yb:YAG thin-rod laser amplifier with a high pulse energy for a fibre oscillator. Quantum Electron. 46, 375–378 (2016)

    Article  ADS  Google Scholar 

  45. E.A. Perevezentsev, I.B. Mukhin, I.I. Kuznetsov, O.L. Vadimova, O.V. Palashov, Nanosecond cryogenic Yb:YAG disk laser. Quantum Electron. 44, 448–451 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Russian Foundation for Basic Research (RFBR) (18-32-00117 mol_a); Ministry of High Education and Science of the RF, State Task executed at the Institute of Applied Physics RAS (0035-2019-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny A. Perevezentsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of topical collection on Cryogenically-Cooled Lasers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevezentsev, E.A., Kuznetsov, I.I., Mukhin, I.B. et al. Multipass cryogenic Yb:Y2O3 ceramic disk amplifier. Appl. Phys. B 125, 141 (2019). https://doi.org/10.1007/s00340-019-7254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7254-4

Navigation