Skip to main content

Advertisement

Log in

Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

X-ray emission resulting from interactions of intense laser pulses with solid metal targets (Ni, Cu, Mo, Ag, and Sn) at 0.5 kHz repetition rate is measured using pulse energies of up to 12 mJ. A comparison of the conversion of laser pulse energy to total X-ray emission energy is made with respect to the previous measurements at lower energy (< 3 mJ). In the present experiments, the total bremsstrahlung conversion efficiency is found to increase by an order of magnitude for all targets as the energy in increased. The Kα line emission conversion efficiency also increases with incident pulse energy for all targets. In addition, the ratio between line and bremsstrahlung emission in the X-ray spectral region was significantly reduced at higher energies because of the large increase in bremsstrahlung. In general, the X-ray source size increases as the laser energy increased and the ellipticity of the X-ray source also increased in the laser polarization direction, with the effect becoming very pronounced at higher energies. Phase-contrast imaging of a nanospray emitter and a 3D printed plastic target was also performed using Cu and Mo targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Wilks, W.L. Kruer, IEEE J. Quantum Electron. 33, 1954 (1997)

    Article  ADS  Google Scholar 

  2. P. Gibbon, E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996)

    Article  ADS  Google Scholar 

  3. Z.H. He, B. Hou, V. Lebailly, J.A. Nees, K. Krushelnick, A.G.R. Thomas, Nat. Commun. 6, 7156 (2015)

    Article  Google Scholar 

  4. A.G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.E. Masson-Laborde, B.X. Hou, I. Sokolov, G. Mourou, I.V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, K. Krushelnick, Phys. Rev. Lett. 103, 235001 (2009)

    Article  ADS  Google Scholar 

  5. B.X. Hou, J. Nees, J. Easter, J. Davis, G. Petrov, A.G.R. Thomas, K. Krushelnick, MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz. Appl. Phys. Lett. 95, 101503 (2009)

    Article  ADS  Google Scholar 

  6. J. Hah, J. Nees, M.D. Hammig, K. Krushelnick, A.G.R. Thomas, Plasma Phys. Control. Fusion 60, 054011 (2018)

    Article  ADS  Google Scholar 

  7. C. Zulick, B. Hou, F. Dollar, A. Maksimchuk, J. Nees, A.G.R. Thomas, Z. Zhao, K. Krushelnick, New J. Phys. 15, 123038 (2013)

    Article  ADS  Google Scholar 

  8. B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L.M. Chen, J.C. Kieffer, C.C. Chamberlain, A. Krol, Appl. Phys. B 83, 1 (2006)

    Article  Google Scholar 

  9. B. Hou, A. Mordovanakis, J. Easter, K. Krushelnick, J.A. Nees, Appl. Phys. Lett. 93, 201503 (2008)

    Article  ADS  Google Scholar 

  10. B. Hou, J. Easter, K. Krushelnick, J.A. Nees, Appl. Phys. Lett. 92, 161501 (2008)

    Article  ADS  Google Scholar 

  11. B. Hou, J. Easter, A. Mordovanakis, K. Krushelnick, J.A. Nees, Opt. Express 16, 17695–17705 (2008)

    Article  ADS  Google Scholar 

  12. J.F. Seely, C.I. Szabo, P. Audebert, E. Brambrink, E. Tabakhoff, L.T. Hudson, Phys. Plasmas 17, 023102 (2010)

    Article  ADS  Google Scholar 

  13. J.F. Seely, C.I. Szabo, P. Audebert, E. Brambrink, Phys. Plasmas 18, 062702 (2011)

    Article  ADS  Google Scholar 

  14. C.M. Laperle, P. Wintermeyer, J.R. Wands, D. Shi, M.A. Anastasio, X. Li, B. Ahr, G.J. Diebold, C.R.-Petruck, Appl. Phys. Lett. 91, 173901 (2007)

    Article  ADS  Google Scholar 

  15. S. Kneip, C. McGuffey, F. Dollar, M.S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, Z. Najmudin, C.A.J. Palmer, J. Schreiber, W. Schumaker, A.G.R. Thomas, V. Yanovsky, Appl. Phys. Lett. 99, 093701 (2011)

    Article  ADS  Google Scholar 

  16. R. Toth, S. Fourmaux, T. Ozaki, M. Servol, J.C. Kieffer, R.E. Kincaid Jr., A. Krol, Phys. Plasmas 14, 053506 (2007)

    Article  ADS  Google Scholar 

  17. R. Toth, J.C. Kieffer, S. Fourmaux, T. Ozaki, A. Krol, Rev. Sci. Instrum. 76, 083701 (2005)

    Article  ADS  Google Scholar 

  18. J.A. Chakera, A. Ali, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. Lett. 93, 261501 (2008)

    Article  ADS  Google Scholar 

  19. S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature 384, 28 (1996)

    Article  Google Scholar 

  20. S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, V. Chvykov, F. Doillar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C. Palmer, J. Schreiber, K. Ta Phoac, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick, Z. Najmudin, Nat. Phys. 6, 980 (2010)

    Article  Google Scholar 

  21. D. Boschetto, G. Mourou, A. Rousse, A. Mordovanakis, B.X. Hou, J. Nees, D. Kumah, R. Clarke, Appl. Phys. Lett. 90, 011106 (2007)

    Article  ADS  Google Scholar 

  22. J. Weisshaupt, V. Juvé, M. Holtz, S.A. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška, Nat. Photonics 8, 927 (2014)

    Article  ADS  Google Scholar 

  23. Y. Azamoum, V. Tcheremiskine, R. Clady, A. Ferré, L. Charmasson, O. Utéza, M. Sentis, Sci. Rep. 8, 4119 (2018)

    Article  ADS  Google Scholar 

  24. F. Dollar, P. Cummings, V. Chvykov, L. Willingale, M. Vargas, V. Yanovsky, C. Zulick, A. Maksimchuk, A.G.R. Thomas, K. Krushelnick, Phys. Rev. Lett. 110, 175002 (2013)

    Article  ADS  Google Scholar 

  25. S. Halas, T. Durakiewicz, J. Phys. 10, 10816 (1998)

    Google Scholar 

  26. P.M. Nilson, A.A. Solodov, J.F. Myatt, W. Theobald, P.A. Jaanimagi, L. Gao, C. Stoeckl, R.S. Craxton, J.A. Delettrez, B. Yaakobi, J.D. Zuegel, B.E. Kruschwitz, C. Dorrer, J.H. Kelly, K.U. Akli, P.K. Patel, A.J. Mackinnon, R. Betti, T.C. Sangster, D.D. Meyerhofer, Phys. Rev. Lett. 105, 235001 (2010)

    Article  ADS  Google Scholar 

  27. A. Thompson, X-ray data booklet. Lawerence Berkeley National Laboratory, C.A. Berkeley, (presently available at http://xdb.lbl.gov). Accessed Sept 2016 (2001)

  28. B. Soom, H. Chen, Y. Fisher, D.D. Meyerhofer, J. Appl. Phys. 74, 5372 (1993)

    Article  ADS  Google Scholar 

  29. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 8 (1964)

    Article  Google Scholar 

  30. NIST Atomic Spectra Database http://www.nist.gov/pml/data/asd.cfm. Accessed Sept 2016

  31. G. Kulcsar, D. Al Mawlawi, F.W. Budnik, P.R. Herman, M. Moskovits, L. Zhao, R.S. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Defense Advanced Research Projects Agency under contract number N66001-11-1-4208 and by the Air Force Office of Scientific Research under award number FA9550-16-1-0121. The author wishes to acknowledge the Lurie Nanofabrication Facility for their support in coating the targets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krushelnick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T.Z., Batson, T., Hou, B. et al. Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets. Appl. Phys. B 125, 8 (2019). https://doi.org/10.1007/s00340-018-7114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7114-7

Navigation