Skip to main content
Log in

Polarization parametric indirect microscopic imaging for patterned device line edge inspection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To know the line edge inspection in any pattern device, super-resolution optical microscope is efficient and necessary due to diffraction limit. As a step toward these issues, we are reporting the polarization parametric indirect microscopic imaging for patterned device line edge inspection. Sub-nanometer resolution imaging techniques such as atomic force microscope (AFM) and scanning electron microscope (SEM) can cause injurious damage to the sample, and it is more costly, time-taking imaging system. The optical microscopy has better imaging effectiveness, low cost, easy assemble. However, the optical microscopes still have to overcome a critical limit in optical resolution caused by the diffraction of visible light. Three different samples with different thickness have been studied. In this new attempt, we examined whether the etched part is fully etched without SiNx, (SiNx SiO2 + Au) in sample 1, 2 and without photoresist in sample 3, respectively. The maximum line edge resolution of PIMI image is better than resolution of the conventional microscope. All the measurements have been done by parametric indirect microscopic imaging (PIMI) system. PIMI images of third pattern device have been compared with the SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.V. Ardenne, UK Patent 511204-A, 1938

  2. R. Reinhold, DE Patent 906737, 1931

  3. E. Abbe, Beiträge zur Theorie des Mikroskops and der mikroskopischenWahrnehmung. Arch. Mikroskop. Anat. 9(1), 413–418 (1873)

    Article  Google Scholar 

  4. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–441 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Kaleem Ullah, M. Garcia-Camara, M. Habib, N. P. Yadav, X. Liu, An indirect method of imaging the stokes-parameter of a submicron particle with sub-diffraction scattering. J. Quant. Spectrosc. Radiat. Transf. 213, 35–40 (2018)

    Article  ADS  Google Scholar 

  6. K. Ullah, B. Garcia-Camara, M. Habib, X. Liu, A. Krasnok, S. Lepeshov, J. Hao, J. Liu, N.P. Yadav, Chiral all-dielectric trimer nanoantenna. J. Quant. Spectrosc. Radiat. Transf. 208, 71–77 (2018)

    Article  ADS  Google Scholar 

  7. X. Kaleem Ullah, M. Liu, Habib, Z. Shen, Subwavelength far field imaging of nanoparticles with parametric indirect microscopic imaging, ACS Photonics 5, 1388–1397 (2018)

    Google Scholar 

  8. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  9. H. Dong, J. Wang, K.H. Fung, T. Cui, Super-resolution image transfer by a vortex-like metamaterial. Opt. Express 21, 9407–9413 (2013)

    Article  ADS  Google Scholar 

  10. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  ADS  Google Scholar 

  11. A. Fang, K. Thomas, M. Soukoulis Costas, Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 79, 245127–245133 (2009)

    Article  ADS  Google Scholar 

  12. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  13. Q. Meng, X. Zhang, L. Cheng, P. Cao, Y. Li, H. Zhang, G. Wang, Deep sub wavelength focusing of light by a trumpet hyperlens. J. Opt. 13, 075102–075105 (2011)

    Article  ADS  Google Scholar 

  14. M. Iwanaga, Hyperlens-array-implemented optical microscopy. Appl. Phys. Lett. 105, 053112 (2014)

    Article  ADS  Google Scholar 

  15. A. Salandrino, N. Engheta, Far-field sub diffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)

    Article  ADS  Google Scholar 

  16. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffraction imaging at visible frequencies. Nat. Common. 1, 143 (2010)

    Article  ADS  Google Scholar 

  17. B. Wood, J.B. Pendry, D.P. Tsai, Directed sub wavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    Article  ADS  Google Scholar 

  18. X. Liu, B. Qiu, Q. Chen, Z. Ni, Y. Jiang, M. Long, L. Gui, Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging. Opt. Express. 22, 20446–20456 (2014)

    Article  ADS  Google Scholar 

  19. Y. Zhou, C. Li, L. Tang, C. Gao, L. Ren, L. Ma, Permanent target for synthetic aperture radar image resolution assessment, In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)(IEEE2015), pp. 4284–4287

  20. G.K. Bennig, US Patent 4724318 A, 1988

  21. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  Google Scholar 

  22. Y. Takahashi, T. Akashi, T. Shimakura, T. Tanigaki, T. Kawasaki, H. Shinada, N. Osakabe, Resolution assessment of an aberration corrected 1.2-MV field emission transmission electron microscope. Microsc. Microanal. 21, 1865–1866 (2015)

    Google Scholar 

  23. J. Montoya, A. Ferrero, L. Yu, S. Leng, C. McCollough, WE-FG-207B-09: experimental assessment of noise and spatial resolution in virtual non-contrast dual-energy CT images across multiple patient sizes and CT systems. Med. Phys. 43, 3836–3836 (2016)

    Article  Google Scholar 

  24. G. Brown, I. Daniels, C. Richardson, P. Revell, D. Peppercorn, M. Bourne, Techniques and trouble-shooting in high spatial resolution thin slice MRI for rectal cancer. Br. J. Radiol. 78, 927 (2005)

    Article  Google Scholar 

  25. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, R. Hillenbrand, Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012)

    Article  Google Scholar 

  26. Y. A.Arbabi, M. Horie, Bagheri, A. Faraon, Dielectric meta-surfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015)

    Article  Google Scholar 

  27. K. Ullah, X. Liu, N. Yadav, M. Habib, L. Song, B. Garcia-Camara, Light scattering by subwavelength Cu2O particle. Nanotechnology 28, 134002 (2017)

    Article  ADS  Google Scholar 

  28. K. Ullah, X. Liu, X. Jichuan, J. Hao, B. Xu, Z. Jun, W. Liu, A polarization parametric method of sensing the scattering signals from a submicrometer particle. IEEE Photonics Technol. Lett. 29(1), 19–22 (2017)

    Article  ADS  Google Scholar 

  29. Q. Zhan, J.R. Leger, High-resolution imaging ellipsometer. Appl. Opt. 41(22), 4443–4450 (2002)

    Article  ADS  Google Scholar 

  30. T.G. Browna, M.A. Alonso, A. Vella, Focused beam scatterometry for deep sub wavelength metrology. Proc. SPIE 8949, 89490Y1, (2014)

    Article  Google Scholar 

  31. A. Echalier, R.L. Glazer, V. Fülöp, M.A. Geday, Assessing crystallization droplets using birefringence. Acta Crystallogr. D Biol. Crystallogr. 60(4), 696–702 (2004)

    Article  Google Scholar 

  32. C. Ye, S. Liu, X. Teng, Q. Fang, G. Li, Morphological and optical characteristics of nanocrystalline TiO2 thin films by quantitative optical anisotropy and imaging techniques. Meas. Sci. Technol. 17(2), 436–440 (2006)

    Article  ADS  Google Scholar 

  33. Z.-L. Zhu, F.-G. Liu, X.-Y. Tao, An improved slanted-edge method to obtain edge spread function. Nanchang DaxueXuebao-GongkeBan. (J. Nanchang Univ. Eng. Technol. Edn.) 35, 78–82 (2013)

    Google Scholar 

  34. Q. Zhao, F. Liu, L. Zhang, D. Zhang, A comparative study on quality assessment of high resolution fingerprint images, In Proceeding of 17th IEEE International Conference on Image Processing (IEEE, 2010), pp. 3089–3092

  35. P.K. Pandey, Y. Singh, S. Tripathi, Image processing using principle component analysis. Int. J. Comput. Appl. 15, 37 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the NSFC Grant (No. 61275163), Research Fund for International Young Scientists NSFC Grant (No. 61750110520), Jiangsu Postdoc Research Fund Grant (1601001B) and National Key Research and Development Program of China (2017YFF0107100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagendra Yadav or Xuefeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Wang, W., Ullah, K. et al. Polarization parametric indirect microscopic imaging for patterned device line edge inspection. Appl. Phys. B 124, 167 (2018). https://doi.org/10.1007/s00340-018-7037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7037-3

Navigation