Skip to main content
Log in

Soliton molecules in a fiber laser based on optic evanescent field interaction with WS2

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Passively mode-locked fiber laser serves as an ideal playground for exploring the dynamics of dissipative solitons. Recently, two-dimensional materials have attracted growing interests for their excellent optical properties in the research field of ultrafast optics. Here, we report an observation of soliton molecules in a passively mode-locked fiber laser based on optic evanescent field interaction with tungsten disulfide (WS2), which contributes to the study of multi-soliton complexes. Particularly, the WS2 saturable absorber (SA) is fabricated by optically depositing the few-layer WS2 nanosheets onto microfiber. In the experiment, stable mode-locking operations are realized, which manifest the effective performance of the WS2 SA. Harmonic mode-locking phenomena are also observed, and these separate solitons facilitate the generation of multi-soliton complexes. Furthermore, due to soliton–soliton interaction, wandering particle-like solitons can be bound together to produce soliton molecules and bunch of soliton molecules. These results enrich both the exploration of multi-soliton complexes and potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Keller, Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  2. M.E. Fermann, T. Hartl, Nat. Photonics 7, 868 (2013)

    Article  ADS  Google Scholar 

  3. P. Grelu, N. Akhmediev, Nat. Photonics 6, 84 (2012)

    Article  ADS  Google Scholar 

  4. D.J. Richardson, R.I. Laming, D.N. Payne, M.W. Phillips, V.J. Matsas, Electron. Lett. 27, 730 (1991)

    Article  Google Scholar 

  5. B. Ortaç, A. Zaviyalov, C.K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, A. Tünnermann, Opt. Lett. 35, 1578 (2010)

    Article  ADS  Google Scholar 

  6. D.Y. Tang, L.M. Zhao, B. Zhao, A.Q. Liu, Phys. Rev. A 72, 043816 (2005)

    Article  ADS  Google Scholar 

  7. Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, H. Zhang, Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201701287

    Google Scholar 

  8. S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 54, 3112–3115 (2015)

    Article  Google Scholar 

  9. V.J. Matsas, T.P. Newson, D.J. Richardson, D.N. Payne, Electron. Lett. 28, 1391 (1992)

    Article  Google Scholar 

  10. D.J. Richardson, R.I. Laming, D.N. Payne, V.J. Matsas, M.W. Phillips, Electron. Lett. 27, 542 (1991)

    Article  Google Scholar 

  11. F. Ilday, F.W. Wise, T. Sosnowski, Opt. Lett. 27, 1531 (2002)

    Article  ADS  Google Scholar 

  12. S. Schön, M. Haiml, U. Keller, Appl. Phys. Lett. 77, 782 (2000)

    Article  ADS  Google Scholar 

  13. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19, 3077 (2009)

    Article  Google Scholar 

  14. H. Haris, S.W. Harun, C.L. Anyi, A.R. Muhammad, F. Ahmad, S.J. Tan, R.M. Nor, N.R. Zulkepely, N.M. Ali, H. Arof, J. Mod. Opt. 63, 777 (2016)

    Article  ADS  Google Scholar 

  15. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang, Sci. Rep. 3, 2718 (2013)

    Article  ADS  Google Scholar 

  16. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D.Y. Tang, D. Fan, Opt. Exp. 23, 12823 (2015)

    Article  ADS  Google Scholar 

  17. Z. Luo, M. Liu, H. Liu, X. Zheng, A. Luo, C. Zhao, H. Zhang, S. Wen, W. Xu, Opt. Lett. 38, 5212 (2013)

    Article  ADS  Google Scholar 

  18. H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Opt. Exp. 22, 7249 (2014)

    Article  ADS  Google Scholar 

  19. R. Khazaeizhad, S.H. Kassani, H. Jeong, D. Yeom, K. Oh, Opt. Exp. 22, 23732 (2014)

    Article  ADS  Google Scholar 

  20. Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, J. Weng, Photonics Res. 3, A79 (2015)

    Article  Google Scholar 

  21. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao, Sci. Rep. 6, 23583 (2016)

    Article  ADS  Google Scholar 

  22. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, J. Zhao, Sci. Rep. 5, 7965 (2015)

    Article  ADS  Google Scholar 

  23. R. Khazaeinezhad, S.H. Kassani, H. Jeong, K.J. Park, B.Y. Kim, D. Yeom, K. Oh, IEEE Photonics Technol. Lett. 27, 1581 (2015)

    Article  ADS  Google Scholar 

  24. K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, Opt. Exp. 23, 11453 (2015)

    Article  ADS  Google Scholar 

  25. M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Sci. Rep. 3, 2961 (2013)

    Article  ADS  Google Scholar 

  26. S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J.G. Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Chem. Soc. Rev. 47, 982–1021 (2018)

    Article  Google Scholar 

  27. H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)

    Article  Google Scholar 

  28. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1226419 (2013)

    Article  Google Scholar 

  29. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)

    Article  ADS  Google Scholar 

  30. Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. Huang, L. Xie, ACS Nano 7, 4610 (2013)

    Article  Google Scholar 

  31. M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005)

    Article  ADS  Google Scholar 

  32. B.A. Malomed, Phys. Rev. A 44, 6954 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, JOSA B 15, 515 (1998)

    Article  ADS  Google Scholar 

  35. D.Y. Tang, B. Zhao, L.M. Zhao, H.Y. Tam, Phys. Rev. E 72, 016616 (2005)

    Article  ADS  Google Scholar 

  36. L.M. Zhao, D.Y. Tang, T.H. Cheng, C. Lu, H.Y. Tam, X.Q. Fu, S.C. Wen, Opt. Quantum Electron. 40, 1053 (2008)

    Article  Google Scholar 

  37. Y.Y. Luo, J.W. Cheng, B.W. Liu, Q.Z. Sun, L. Li, S.N. Fu, D.Y. Tang, L.M. Zhao, D.M. Liu, Sci. Rep. 7, 2369 (2017)

    Article  ADS  Google Scholar 

  38. D.Y. Tang, L.M. Zhao, B. Zhao, Appl. Phys. B Lasers Opt. 80, 239 (2005)

    Article  ADS  Google Scholar 

  39. L. Tong, F. Zi, X. Guo, J. Lou, Opt. Commun. 285, 4641 (2012)

    Article  ADS  Google Scholar 

  40. Z. Luo, M. Liu, Z. Guo, X. Jiang, A. Luo, C. Zhao, X. Yu, W. Xu, H. Zhang, Opt. Exp. 23, 20030–20039 (2015)

    Article  ADS  Google Scholar 

  41. G. Li, Y. Chen, X. Yan, L. Zhao, Appl. Opt. 57, 3507–3510 (2018)

    Article  ADS  Google Scholar 

  42. A.N. Pilipetskii, E.A. Golovchenko, C.R. Menyuk, Opt. Lett. 20, 907 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant number: 61775072), the Wuhan Morning Light Plan of Youth Science and Technology (Grant number: 2017050304010280), the Fundamental Research Funds for the Central Universities (HUST, Grant number: 2017KFXKJC002), the Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei (Grant number: 2018CFA004), the Major Projects of Technical Innovation of Hubei (Grant number: 2018AAA040), and the China Postdoctoral Science Foundation funded Project (Grant number: 2018M630853).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyang Luo or Qizhen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Xiang, Y., Luo, Y. et al. Soliton molecules in a fiber laser based on optic evanescent field interaction with WS2. Appl. Phys. B 124, 151 (2018). https://doi.org/10.1007/s00340-018-7019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7019-5

Navigation