Skip to main content
Log in

Compact atom interferometer using single laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Yu, J.M. Kohel, J.R. Kellogg, L. Maleki, Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl. Phys. B 84(4), 647–652 (2006)

    Article  ADS  Google Scholar 

  2. N. Yu, J. Kohel, L. Romans, L. Maleki, Quantum gravity gradiometer sensor for earth science applications. NASA Earth Science and Technology Conference, Paper B3P5 (Pasadena, California, 2002), p. 2002

  3. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65(3), 033608 (2002)

    Article  ADS  Google Scholar 

  4. J.K. Stockton, K. Takase, M.A. Kasevich, Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett. 107(13), 133001 (2011)

    Article  ADS  Google Scholar 

  5. J.B. Fixler, G.T. Foster, J.M. McGuirk, M.A. Kasevich, Atom interferometer measurement of the Newtonian constant of gravity. Science 315(5808), 74–7 (2007)

    Article  ADS  Google Scholar 

  6. M. Prevedelli, L. Cacciapuoti, G. Rosi, F. Sorrentino, G.M. Tino, Measuring the Newtonian constant of gravitation G with an atomic interferometer. Philos. Trans. A Math. Phys. Eng. Sci. 372, 2014 (2026)

    Google Scholar 

  7. G. Varoquaux, N. Zahzam, W. Chaibi, J.F. Clément, O. Carraz, J.P. Brantut, R.A. Nyman, F.P. Dos Santos, L. Mondin, M. Rouzé, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, I.C.E.: an ultra-cold atom source for long-baseline interferometric inertial sensors in reduced gravity. In: Rencontres de Moriond Gravitational Waves and Experimental Gravity, La Thuile, Val d’Aosta, Italy, March 2007 (2007)

  8. O. Carraz, F. Lienhart, N. Zahzam, Y. Bidel, A. Bresson, Single laser system for onboard atomic interferometry. In: Quantum Electronics and Laser Science Conference, p. QThH3. Optical Society of America; 2008

  9. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Compact and robust laser system for onboard atom interferometry. Appl. Phys. B Lasers Opt. 97(2), 405–411 (2009)

    Article  ADS  Google Scholar 

  10. S. Merlet, L. Volodimer, M. Lours, F.P. Dos Santos, A simple laser system for atom interferometry. Appl. Phys. B 117(2), 749–754 (2014)

    Article  Google Scholar 

  11. S. Riedl, G.W. Hoth, B. Pelle, J. Kitching, E.A. Donley, Compact atom-interferometer gyroscope based on an expanding ball of atoms. J. Phys. Conf. Ser. 723, 012058 (2016)

    Article  Google Scholar 

  12. G.W. Hoth, B. Pelle, S. Riedl, J. Kitching, E.A. Donley, Point source atom interferometry with a cloud of finite size. Appl. Phys. Lett. 109(7), 071113 (2016)

    Article  ADS  Google Scholar 

  13. C.C. Nshii, M. Vangeleyn, J.P. Cotter, P.F. Griffin, E.A. Hinds, C.N. Ironside, P. See, A.G. Sinclair, E. Riis, A.S. Arnold, A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nat. Nanotechnol. 8(5), 321–324 (2013)

    Article  ADS  Google Scholar 

  14. Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, A. Landragin, A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 96(13), 134101 (2010)

    Article  ADS  Google Scholar 

  15. J.A. Rushton, M. Aldous, M.D. Himsworth, Contributed review: the feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Instrum. 85(12), 121501 (2014)

    Article  ADS  Google Scholar 

  16. A. Dellis, M.T. Hummon, S. Kang, E.A. Donley, J. Kitching, Chip-scale mot for microsystems technology. Front. Opt. FTh5F–4 (2016)

  17. A.T. Dellis, V. Shah, E.A. Donley, S. Knappe, J. Kitching, Low helium permeation cells for atomic microsystems technology. Opt. Lett. 41(12), 2775–2778 (2016)

    Article  ADS  Google Scholar 

  18. C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.G. Scherneck, J .Müller, A. Peters, Mobile quantum gravity sensor with unprecedented stability. In: Journal of Physics: Conference Series, vol. 723, p 012050. IOP Publishing; 2016

  19. S. Kulas, C. Vogt, A. Resch, J. Hartwig, S. Ganske, J. Matthias, D. Schlippert, T. Wendrich, W. Ertmer, E.M. Rasel et al., Miniaturized lab system for future cold atom experiments in microgravity. Microgravity Sci. Technol. 29(1–2), 37–48 (2017)

    Article  ADS  Google Scholar 

  20. A. Alvarez-Herrero, N. Uribe-Patarroyo, P. García Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, I. Manolis, Imaging polarimeters based on liquid crystal variable retarders: an emergent technology for space instrumentation. In: Proceedings of SPIE Polarization Science and Remote Sensing V, vol. 8160, pp. 81600Y–81600Y–18; 2011

  21. A. Álvarez-Herrero et al, The polarization modulators based on liquid crystal variable retarders for the PHI and METIS instruments for the Solar Orbiter mission. In: International Conference on Space Optics–ICSO 2014 (2014)

  22. A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, The influence of transverse motion within an atomic gravimeter. N. J. Phys. 13(6), 065025 (2011)

    Article  Google Scholar 

  23. V. Schkolnik, B. Leykauf, M. Hauth, C. Freier, A. Peters, The effect of wavefront aberrations in atom interferometry. Appl. Phys. B 120(2), 311–316 (2015)

    Article  ADS  Google Scholar 

  24. A. Trimeche, M. Langlois, S. Merlet, F.P. Dos Santos, Active control of laser wavefronts in atom interferometers. Phys. Rev. Appl. 7(3), 034016 (2017)

    Article  ADS  Google Scholar 

  25. F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, A. Bresson, Narrow linewidth single laser source system for onboard atom interferometry. Appl. Phys. B 118(1), 1–5 (2015)

    Article  ADS  Google Scholar 

  26. P.M.T. Barboza, G.G. Nascimento, M.O. Araújo, C.M. da Silva, H.L.D. de S Cavalcante, M. Oriá, M. Chevrollier, T.P. de Silans, Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry. J. Phys. B At. Mol. Opt. Phys. 49(8), 085401 (2016)

  27. D.L. Butts, J.M. Kinast, B.P. Timmons, R.E. Stoner, Light pulse atom interferometry at short interrogation times. JOSA B 28(3), 416–421 (2011)

    Article  ADS  Google Scholar 

  28. O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation. Phys. Rev. A 86, 033605 (2012)

    Article  ADS  Google Scholar 

  29. N. Malossi, Q. Bodart, S. Merlet, T. Léveque, A. Landragin, F.P. Dos Santos, Double diffraction in an atomic gravimeter. Phys. Rev. A 81(1), 013617 (2010)

    Article  ADS  Google Scholar 

  30. E. Giese, A. Roura, G. Tackmann, E.M. Rasel, W.P. Schleich, Double bragg diffraction: a tool for atom optics. Phys. Rev. A 88(5), 053608 (2013)

    Article  ADS  Google Scholar 

  31. B. Décamps, A. Gauguet, J. Vigué, M. Büchner, Pancharatnam phase: a tool for atom optics. Phys. Rev. A 96(1), 013624 (2017)

    Article  ADS  Google Scholar 

  32. B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, P. Bouyer, Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016)

    Article  ADS  Google Scholar 

  33. N. Yu, L. Maleki, Atomic references for measuring small accelerations. NASA Tech Briefs, p. 30, March 1 2009 (2009)

  34. J. Lautier, L. Volodimer, T. Hardin, S. Merlet, M. Lours, F.P. Dos Santos, A. Landragin, Hybridizing matter-wave and classical accelerometers. Appl. Phys. Lett. 105(14), 144102 (2014)

    Article  ADS  Google Scholar 

  35. X. Wu, F. Zi, J. Dudley, R.J. Bilotta, P. Canoza, H. Müller, Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. Optica 4(12), 1545–1551 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-wey Chiow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiow, Sw., Yu, N. Compact atom interferometer using single laser. Appl. Phys. B 124, 96 (2018). https://doi.org/10.1007/s00340-018-6965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6965-2

Navigation