Skip to main content

Advertisement

Log in

Tunable organic distributed feedback dye laser device excited through Förster mechanism

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10–0.15 mJ cm−2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25–0.30 mJ cm−2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.W. Samuel, G.A. Turnbull, Organic semiconductor lasers. Chem. Rev 107, 1272–1295 (2007)

    Article  Google Scholar 

  2. S. Chénais, S. Forget, Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012)

    Article  Google Scholar 

  3. G. Jordan, M. Flämmich, M. Rüther, T. Kobayashi, W.J. Blau, Y. Suzuki Y, T. Kaino, Light amplification at 501 nm and large nanosecond optical gain in organic dye-doped polymeric waveguides. Appl. Phys. Lett. 88, 161114 (2006)

    Article  ADS  Google Scholar 

  4. J.C. Ribierre, G. Tsiminis, S. Richardson, G.A. Turnbull, J.D.W. Samuel, H.S. Barcena, P.L. Burn, Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007)

    Article  ADS  Google Scholar 

  5. B. Guzelturk, A.L. Kanibolotsky, C. Orofino-Pena, N. Laurand, M.D. Dawson, P.J. Skabara, H.V. Demir, Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption. J. Mater. Chem. C 3, 12018–12025 (2015)

    Article  Google Scholar 

  6. M. Berggren, A. Dodabalapur, R.E. Slusher, Stimulated emission and lasing in dye-doped organic thin films with Förster transfer. Appl. Phys. Lett. 71, 2230 (1997)

    Article  ADS  Google Scholar 

  7. V.G. Kozlov, V. Bulović, P.E. Burrows, S.R. Forrest, Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997)

    Article  ADS  Google Scholar 

  8. S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, V. Witter, Laser modes in organic solid-state distributed feedback lasers, Appl. Phys. B 71, 897–900 (2000)

    Article  ADS  Google Scholar 

  9. P.B. Deotare, T.S. Mahony, V. Bulović, Ultracompact low-threshold organic laser. ACS Nano 8(11), 11080–11085 (2014)

    Article  Google Scholar 

  10. N. Tsutsumi, A. Fujiwara, D. Hayashi, Tunable distributed feedback lasing with a threshold in the nanojoule range in an organic guest–host polymeric waveguide. Appl. Opt. 45(22), 5748–5751 (2006)

    Article  ADS  Google Scholar 

  11. N. Tsutsumi, M. Takeuchi, Ti-sapphire femtosecond pulse pumped laser emission from all-plastic organic waveguide with distributed feedback resonator. Opt. Commun 281, 2179–2183 (2008)

    Article  ADS  Google Scholar 

  12. N. Tsutsumi, M. Takeuchi, W. Sakai, All-plastic organic dye laser with distributed feedback resonator structure. Thin Solid Films 516, 2783–2787 (2008)

    Article  ADS  Google Scholar 

  13. N. Tsutsumi, H. Nishida, Tunable distributed feedback lasing with low threshold and high slope efficiency from electroluminescent conjugated polymer waveguide. Opt. Commun 284, 3365–3368 (2011)

    Article  ADS  Google Scholar 

  14. G. Heliotis, R. Xia, G.A. Turnbull, P. Andrew, W.L. Barnes, I.D.W. Samuel, D.D.C. Bradley, Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14(1), 91–97 (2004)

    Article  Google Scholar 

  15. E.B. Namdas, M. Tong, P. Ledochowitsch, S.R. Mednick, J.D. Yuen, D. Moses, A.J. Heeger, Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers. Adv. Mater 21, 799–802 (2009)

    Article  Google Scholar 

  16. V.G. Kozlov, V. Bilovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarathy, S.R. Forrest, Y. You, M.E. Thompson, Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys 84, 4096–4108 (1998)

    Article  ADS  Google Scholar 

  17. G. Ramos-Oritz, Y. Oki, B. Domercq, B. Kippelen, Förster energy transfer from a fluorescent dye to a phosphorescent dopant: a concentration and intensity study. Phys. Chem. Chem. Phys. 4, 4109–4114 (2002)

    Article  Google Scholar 

  18. M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films. J. Alloys Compounds 507, 112–119 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, N., Hinode, T. Tunable organic distributed feedback dye laser device excited through Förster mechanism. Appl. Phys. B 123, 93 (2017). https://doi.org/10.1007/s00340-017-6679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6679-x

Keywords

Navigation