Skip to main content
Log in

Unexpectedly large difference of the electron density at the nucleus in the \( 4p\, ^2{\mathrm {P}}_{{1}/{2},{3}/{2}}\) fine-structure doublet of Ca\(^+\)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We measured the isotope shift in the \(^2{\mathrm {S}}_{{1}/{2}}\) \(\rightarrow \) \(^2{\mathrm {P}}_{{3}/{2}}\) (D2) transition in singly ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to compare the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the \(^2{\mathrm {S}}_{{1}/{2}}\) \(\rightarrow \) \(^2{\mathrm {P}}_{{1}/{2}}\) (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data, we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Breit, Rev. Mod. Phys. 30, 507 (1958)

    Article  ADS  Google Scholar 

  2. P. Campbell, I.D. Moore, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  3. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)

    Article  ADS  Google Scholar 

  4. V.A. Dzuba et al., Phys. Rev. A 72, 022503 (2005)

    Article  ADS  Google Scholar 

  5. E. Mané et al., Phys. Rev. Lett. 107, 212502 (2011)

    Article  ADS  Google Scholar 

  6. C. Delaunay et al., arXiv:1601.05087 (2016)

  7. M.G. Kozlov et al., Phys. Rev. A 70, 062108 (2004)

    Article  ADS  Google Scholar 

  8. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, J.A. King, M.G. Kozlov, M.T. Murphy, and J.K. Webb, Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra, in From Varying Couplings to Fundamental Physics, edited by C. Martins and P. Molaro, Astrophysics and Space Science Proceedings, (Springer Berlin Heidelberg, 2011), pp. 9–16, arxiv preprint arXiv:1011.4136

  9. M.T. Murphy, J.C. Berengut, MNRAS 438, 388–411 (2014)

    Article  ADS  Google Scholar 

  10. V.A. Korol, M.G. Kozlov, Phys. Rev. A 76, 022103 (2007)

    Article  ADS  Google Scholar 

  11. W. Nörtershäuser et al., Eur. Phys. J. D 2, 33 (1998)

    Article  Google Scholar 

  12. F. Castelli, S. Hubrig, Astron. Astrophys. 421, L1 (2004)

    Article  ADS  Google Scholar 

  13. C.R. Cowley, S. Hubrig, Astron. Astrophys. 432, L21 (2005)

    Article  ADS  Google Scholar 

  14. C.W. Palmer et al., J. Phys. B 17, 2197 (1984)

    Article  ADS  Google Scholar 

  15. A.-M. Mårtensson-Pendrill et al., Phys. Rev. A 45, 4675 (1992)

    Article  ADS  Google Scholar 

  16. L. Vermeeren et al., Phys. Rev. Lett. 68, 1679 (1992)

    Article  ADS  Google Scholar 

  17. R.F. Garcia Ruiz et al., Nat. Phys. 12, 594 (2016)

    Article  Google Scholar 

  18. Z.-T. Lu, K.D.A. Wendt, Rev. Sci. Instrum. 74, 1169 (2003)

    Article  ADS  Google Scholar 

  19. A.L. Wolf et al., Phys. Rev. A 78, 032511 (2008)

    Article  ADS  Google Scholar 

  20. A.L. Wolf et al., Phys. Rev. Lett. 102, 223901 (2009)

    Article  ADS  Google Scholar 

  21. Y. Wan et al., Nat. Commun. 5, 4096 (2014)

    Google Scholar 

  22. F. Gebert et al., Phys. Rev. Lett. 115, 053003 (2015)

    Article  ADS  Google Scholar 

  23. C. Gorges et al., J. Phys. B 48, 245008 (2015)

    Article  ADS  Google Scholar 

  24. H.J. Emrich et al., Nucl. Phys. A 396, 401 (1983)

    Article  ADS  Google Scholar 

  25. H.D. Wohlfahrt et al., Phys. Rev. C 23, 533 (1981)

    Article  ADS  Google Scholar 

  26. H. Rebel et al., Proceedings of the Karlsruhe International Discussion Meeting, held at Kernforschungszentrum Karlsruhe, ed. by H. Rebel, H.J. Gils, G. Schatz, Kernforschungszentrum Karlsruhe GmbH, ISSN 0303–4003 (1979)

  27. B.K. Sahoo, Phys. Rev. A 80, 012515 (2009)

    Article  ADS  Google Scholar 

  28. Y. Wan et al., Phys. Rev. A 91, 043425 (2015)

    Article  ADS  Google Scholar 

  29. F. Gebert et al., New J. Phys. 18, 13037 (2016)

    Article  Google Scholar 

  30. W.H. King, Isotope Shifts in Atomic Spectra, 1st edn. (Springer Verlag, New York, 1984)

    Book  Google Scholar 

  31. G. Fricke, K. Heilig, Nuclear Charge Radii, Landolt-Börnstein, Group I: Elementary Particles, Nuclei and Atoms, vol. 20 (Springer-Verlag, Berlin Heidelberg, 2004)

    Google Scholar 

  32. F. Schmidt-Kaler et al., Phys. Rev. A 51, 2789 (1995)

    Article  ADS  Google Scholar 

  33. P. Zhao et al., Phys. Rev. Lett. 66, 592 (1991)

    Article  ADS  Google Scholar 

  34. F. Marin et al., Phys. Rev. A 49, R1523 (1994)

    Article  ADS  Google Scholar 

  35. D. Shiner et al., Phys. Rev. Lett. 74, 3553 (1995)

    Article  ADS  Google Scholar 

  36. L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  37. P. Müller et al., Phys. Rev. Lett 99, 252501 (2007)

    Article  Google Scholar 

  38. P.C. Pastor et al., Phys. Rev. Lett. 108, 143001 (2012)

    Article  ADS  Google Scholar 

  39. E. Riis et al., Phys. Rev. A 49, 207 (1994)

    Article  ADS  Google Scholar 

  40. G. Ewald et al., Phys. Rev. Lett. 93, 94 (2004)

    Article  Google Scholar 

  41. R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  42. W. Nörtershäuser et al., Phys. Rev. A 83, 012516 (2011)

    Article  Google Scholar 

  43. C.J. Sansonetti et al., Phys. Rev. Lett. 107, 023001 (2011)

    Article  ADS  Google Scholar 

  44. R.C. Brown et al., Phys. Rev. A 87, 032504 (2013)

    Article  ADS  Google Scholar 

  45. W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)

    Article  Google Scholar 

  46. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  47. W. Nörtershäuser et al., Phys. Rev. Lett. 115, 033002 (2015)

    Article  Google Scholar 

  48. M. Herrmann et al., Phys. Rev. Lett. 102, 013006 (2009)

    Article  ADS  Google Scholar 

  49. V. Batteiger et al., Phys. Rev. A 80, 022503 (2009)

    Article  ADS  Google Scholar 

  50. L.D. Landau et al., Relativistic Quantum Mechanics (Pergamon, Oxford, 1971)

    Google Scholar 

  51. K. Wendt et al., Z. Phys. A 318, 125 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  52. G. Drake, Windsor University, priv. commun

  53. D. York et al., Am. J. Phys. 72, 367 (2004)

    Article  ADS  Google Scholar 

  54. G. Audi et al., Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  55. E.W. Otten, Treatise Heavy Ion Sci. 8, 517 (1989)

    Article  Google Scholar 

  56. H.D. Wohlfahrt et al., Phys. Lett. 73B, 131 (1978)

    Article  ADS  Google Scholar 

  57. K. Pachucki, V. Yerokhin, Can. J. Phys. 89, 95 (2011)

    Article  ADS  Google Scholar 

  58. M. Puchalski, D. Kdziera, K. Pachucki, Phys. Rev. A 87, 032503 (2013)

    Article  ADS  Google Scholar 

  59. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)

    Article  ADS  Google Scholar 

  60. V.A. Yerokhin, Phys. Rev. A 83, 012507 (2011)

    Article  ADS  Google Scholar 

  61. J. Mitroy, D.W. Norcross, Phys. Rev. A 37, 3755 (1988)

    Article  ADS  Google Scholar 

  62. D.W. Norcross, M.J. Seaton, J. Phys. B 9, 2983 (1976)

    Article  ADS  Google Scholar 

  63. V.A. Yerokhin, S.Y. Buhmann, S. Fritzsche, and A. Surzhykov, arXiv:1608.04515, (2016)

  64. M.S. Safronova, W.R. Johnson, Phys. Rev. A 64, 052501 (2001)

    Article  ADS  Google Scholar 

  65. B.K. Sahoo, J. Phys. B 43, 231001 (2010)

    Article  ADS  Google Scholar 

  66. L.W. Wansbeek et al., Phys. Rev. A 86, 015503 (2012)

    ADS  Google Scholar 

  67. B.K. Sahoo, Phys. Rev. A 93, 022503 (2016)

    Article  ADS  Google Scholar 

  68. V.A. Dzuba, V.V. Flambaum, P.G. Silvestrov, O.P. Sushkov, J. Phys. B 20, 1399 (1987)

    Article  ADS  Google Scholar 

  69. V.A. Dzuba, V.V. Flambaum, M.G. Kozlov, Phys. Rev. A 54, 3948 (1996)

    Article  ADS  Google Scholar 

  70. J.C. Berengut, V.V. Flambaum, M.G. Kozlov, Phys. Rev. A 73, 012504 (2006)

    Article  ADS  Google Scholar 

  71. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, Phys. Rev. A 68, 022502 (2003)

    Article  ADS  Google Scholar 

  72. J.C. Berengut, Phys. Rev. A 94, 012502 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Federal Ministry for Education and Research (BMBF) under contract 05P15RDFN1, the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program by the State of Hesse, the State of Lower Saxony, Hannover, Germany and DFG through grants SCHM2678/3-1 and CRC 1227 DQ-mat, project B05. SK received support from HGS-Hire. BKS acknowledges use of the Vikram-100 HPC cluster at the Physical Research Laboratory, Ahmedabad for performing calculations. V.A.Y acknowledges support by the Russian Federation program for organizing and carrying out scientific investigations. WN thanks G.W.F. Drake, Z.C. Yan, and R. Neugart for stimulating discussions. PS and WN thank K. Pachucki for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Schmidt.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Gebert, F., Gorges, C. et al. Unexpectedly large difference of the electron density at the nucleus in the \( 4p\, ^2{\mathrm {P}}_{{1}/{2},{3}/{2}}\) fine-structure doublet of Ca\(^+\) . Appl. Phys. B 123, 2 (2017). https://doi.org/10.1007/s00340-016-6572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6572-z

Keywords

Navigation