Skip to main content
Log in

Dispersive Fourier transformation femtosecond stimulated Raman scattering

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the first proof-of-principle spectroscopic measurements with purely passive dispersive Fourier transformation femtosecond stimulated Raman scattering. In femtosecond stimulated Raman scattering, the full Raman scattering spectrum is efficiently obtained, as all Raman transitions are coherently excited with the combination of a narrow-bandwidth and a broad-bandwidth (femtosecond) pulse at once. Currently, the detection speed of the spectra is limited by the read-out time of classical, comparably slow CCD-based spectrometers. We show a reduction in the acquisition time of Raman signatures by applying the dispersive Fourier transformation, a method employing wavelength-to-time transformation, in order to record the spectral composition of a single pulse with a single fast photodiode. This arrangement leads to an acquisition time of Raman signatures, scaling inversely with the repetition frequency of the applied laser system, which in our case corresponds to the order of microseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Salzer, H.W. Siesler (eds.), Infrared and Raman Spectroscopic Imaging (Wiley, Hoboken, 2009)

    Google Scholar 

  2. T. Dieing, W. Ibach, in Confocal Raman Microscopy, ed. by T. Dieing, O. Hollricher, J. Toporski (Springer, Berlin, 2010). (Chap. 4)

    Google Scholar 

  3. D.W. McCamant, P. Kukura, R.A. Mathies, Appl. Spectrosc. 57, 1317 (2003)

    Article  ADS  Google Scholar 

  4. S.-Y. Lee, D. Zhang, D.W. McCamant, P. Kukura, R.A. Mathies, J. Chem. Phys. 121, 3632 (2004)

    Article  ADS  Google Scholar 

  5. B. Zhao, K. Niu, X. Li, S.-Y. Lee, Sci. China Chem. 54, 1989 (2011)

    Article  Google Scholar 

  6. D.W. McCamant, P. Kukura, R.A. Mathies, J. Phys. Chem. A 107, 8208 (2003)

    Article  Google Scholar 

  7. P. Kukura, D.W. McCamant, R.A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007)

    Article  ADS  Google Scholar 

  8. R.R. Frontiera, R.A. Mathies, Laser Photonics Rev. 5, 102 (2011)

    Article  Google Scholar 

  9. R.R. Frontiera, C. Fang, J. Dasgupta, R.A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012)

    Article  Google Scholar 

  10. S. Shim, R.A. Mathies, J. Phys. Chem. B 112, 4826 (2008)

    Article  Google Scholar 

  11. H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, S. Mukamel, J. Am. Chem. Soc. 136, 14801 (2014)

    Article  Google Scholar 

  12. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, P. Gilch, Appl. Phys. B 87, 389 (2007)

    Article  ADS  Google Scholar 

  13. S. Dobner, C. Fallnich, J. Chem. Phys. 140, 084201 (2014)

    Article  ADS  Google Scholar 

  14. K. Goda, B. Jalali, Nat. Photonics 7, 102 (2013)

    Article  ADS  Google Scholar 

  15. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  16. T. Godin, B. Wetzel, T. Sylvestre, Opt. Express 21, 994 (2013)

    Article  Google Scholar 

  17. B. Wetzel, A. Stefani, L. Larger, P.A. Lacourt, J.M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J.M. Dudley, Sci. Rep. 2, 882 (2012)

    Article  ADS  Google Scholar 

  18. K. Goda, K.K. Tsia, B. Jalali, Nature 458, 1145 (2009)

    Article  ADS  Google Scholar 

  19. D.R. Solli, J. Chou, B. Jalali, Nat. Photonics 2, 48 (2008)

    Article  ADS  Google Scholar 

  20. Z. Meng, G.I. Petrov, S. Cheng, J.A. Jo, K.K. Lehmann, V.V. Yakovlev, M.O. Scully, Proc. Natl. Acad. Sci. USA 112, 12315 (2015)

    Article  ADS  Google Scholar 

  21. C.L. Evans, E.O. Potma, M. Puoris’haag, D. Côté, C.P. Lin, X.S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005)

    Article  ADS  Google Scholar 

  22. B.G. Saar, C.W. Freudiger, J. Reichman, C.M. Stanley, G.R. Holtom, X.S. Xie, Science 330, 1368 (2010)

    Article  ADS  Google Scholar 

  23. S. Dobner, P. Groß, C. Fallnich, J. Chem. Phys. 138, 244201 (2013)

    Article  ADS  Google Scholar 

  24. B. Marx, L. Czerwinski, R. Light, M. Somekh, P. Gilch, J. Raman Spectrosc. 45, 521 (2014)

    Article  ADS  Google Scholar 

  25. E. Ploetz, B. Marx, T. Klein, R. Huber, P. Gilch, Opt. Express 17, 18612 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Gerke and his group at the Institute of Medical Biochemistry (ZMBE) in Münster, Germany, for fruitful discussions.

Funding

We gratefully acknowledge funding by the Cells in Motion cluster of excellence (EXC 1003) within the pilot project No. PP-2014-07. Additionally, we acknowledge scientific equipment support of the state North Rhine-Westphalia and the Deutsche Forschungsgemeinschaft (DFG) within the DFGs Mayor Research Instrumentation Program by Project No. INST 211/592-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Dobner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobner, S., Fallnich, C. Dispersive Fourier transformation femtosecond stimulated Raman scattering. Appl. Phys. B 122, 278 (2016). https://doi.org/10.1007/s00340-016-6555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6555-0

Keywords

Navigation