Skip to main content
Log in

Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure – Nuclear Physics facility

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure – Nuclear Physics (ELI–NP) facility. The specific activity for three benchmark radioisotopes, \(^{99}\hbox{Mo}/^{99m}\hbox{Tc}, ^{225}\hbox{Ra}/^{225}\hbox{Ac}\) and \(^{186}\hbox{Re}\), was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI–NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1–2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of \(10^{11}\) photons/s. Based on these results, we suggest that the ELI–NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. World Nuclear Association, Radioisotopes in Medicine (Information Library, 2014)

  2. C. Schiepers, Diagnostic Nuclear Medicine (Springer, Berlin, 2006)

    Google Scholar 

  3. NuPECC Report, Nuclear Physics for Medicine. http://www.nupecc.org/pub/npmed2014

  4. D. Habs, U. Köster, Appl. Phys. B 103, 501–519 (2011)

    Article  ADS  Google Scholar 

  5. G.A. Mourou, C.L. Labaune, M. Dunne, N. Naumova, V.T. Tikhonchuk, Plasma Phys. Control. Fusion 49, B667 (2007)

    Article  ADS  Google Scholar 

  6. W.K.W.D. Ledingham, P. McKenna, R.P. Singhal, Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  7. K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, A. Rousse, Nat. Photonics 6, 308 (2012)

    Article  ADS  Google Scholar 

  8. W.J. Brown, S.G. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, J.K. Crane, D.N. Fiffinghoff, D.J. Gibson, F.V. Hartmann, E.P. Hartouni, J. Kuba, G.P. Le Sage, D.R. Slaughter, A.M. Tremaine, A.J. Wootton, P.T. Springer, Phys. Rev. ST AB 7, 060702 (2004)

    ADS  Google Scholar 

  9. K. Chouffani, D. Wells, F. Harmon, J. Jones, G. Lancaster, Nucl. Instrum. Methods Phys. Res. A 495, 95 (2002)

    Article  ADS  Google Scholar 

  10. M. Babzien, I. Ben-Zvi, K. Kusche, I.V. Pavlishin, I.V. Pogorelsky, D.P. Siddons, V. Yakimenko, D. Cline, F. Zhou, T. Hirose, Y. Kamiya, T. Kumita, T. Omori, J. Urakawa, K. Yokoya, Phys. Rev. Lett. 96, 054802 (2006)

    Article  ADS  Google Scholar 

  11. W. Luo, W. Xu, Q.Y. Pan, X.Z. Cai, J.G. Chen, Y.Z. Chen, G.T. Fan, G.W. Fan, W. Guo, Y.J. Li, W.H. Liu, G.Q. Lin, Y.G. Ma, W.Q. Shen, X.C. Shi, B.J. Xu, J.Q. Xu, Y. Xu, H.O. Zhang, Z. Yan, L.F. Yang, M.H. Zhao, Rev. Sci. Instrum. 81, 013304 (2010)

    Article  ADS  Google Scholar 

  12. W. Luo, W. Xu, Q.Y. Pan, X.Z. Cai, Y.Z. Chen, G.T. Fan, G.W. Fan, Y.J. Li, W.H. Liu, G.Q. Lin, Y.G. Ma, W.Q. Shen, X.C. Shi, B.J. Xu, J.Q. Xu, Y. Xu, H.O. Zhang, Z. Yan, L.F. Yang, M.H. Zhao, Appl. Phys. B 101, 761 (2010)

    Article  ADS  Google Scholar 

  13. S. Chen, N.D. Powers, I. Ghebregziabher, C.M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, D.P. Umstadter, Phys. Rev. Lett. 110, 155003 (2013)

    Article  ADS  Google Scholar 

  14. G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, Z. Najmudin, D. Symes, A.G.R. Thomas, M. Yeung, Z. Zhao, M. Zepf, Phys. Rev. Lett. 113, 224801 (2014)

    Article  ADS  Google Scholar 

  15. W. Luo, W. Xu, Q.Y. Pan, Z.D. An, X.L. Cai, G.T. Fan, G.W. Fan, Y.J. Li, B.J. Xu, Z. Yan, L.F. Yang, Nucl. Instrum. Methods Phys. Res. A 660, 108–115 (2011)

    Article  ADS  Google Scholar 

  16. http://www.tunl.duke.edu/higs/

  17. J.L. Tain, Synchrotron Radiat. News 22, 3 (2009) (and reference therein)

    Article  ADS  Google Scholar 

  18. Q.Y. Pan, W. Xu, W. Luo, X.Z. Cai, J.G. Chen, G.T. Fan, G.W. Fan, W. Guo, Y.J. Li, G.Q. Lin, Y.G. Ma, W.Q. Shen, X.C. Shi, H.W. Wang, B.J. Xu, J.Q. Xu, Y. Xu, Z. Yan, L.F. Yang, M.H. Zhao, Synchrotron Radiat. News 22, 11 (2009) (and reference therein)

    Article  Google Scholar 

  19. Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J.J. Santos, E. Lefebvre, J.P. Rousseau, F. Burgy, B. Mercier, V. Malka, Phys. Rev. Lett. 94, 025003 (2005)

    Article  ADS  Google Scholar 

  20. P.A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, F.N. Beg, K. Krushelnick, M. Tatarakis, A.E. Dangor, X. Fang, P. Graham, T. McCanny, R.P. Singhal, K.W.D. Ledingham, A. Creswell, D.C.W. Sanderson, J. Magill, A. Machacek, J.S. Wark, R. Allott, B. Kennedy, D. Neely, Phys. Plasmas 6, 2150 (1999)

    Article  ADS  Google Scholar 

  21. A. Giulietti, N. Bourgeois, T. Ceccotti, X. Davoine, S. Dobosz, P. D’Oliveira, M. Galimberti, J. Galy, A. Gamucci, D. Giulietti, L.A. Gizzi, D.J. Hamilton, E. Lefebvre, L. Labate, J.R. Marques, P. Monot, H. Popescu, F. Reau, G. Sarri, P. Tomassini, P. Martin, Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  22. W. Schumaker, G. Sarri, M. Vargas, Z. Zhao, K. Behm, V. Chvykov, B. Dromey, B. Hou, A. Maksimchuk, J. Nees, V. Yanovsky, M. Zepf, A.G.R. Thomas, K. Krushelnick, Phys. Plasmas 21, 056704 (2014)

    Article  ADS  Google Scholar 

  23. D. Habs, T. Tajima, J. Schreiber, C. Barty, M. Fujiwara, P. Thirolf, Eur. Phys. J. D 55, 279 (2009)

    Article  ADS  Google Scholar 

  24. D. Habs, P.G. Thirolf, C. Lang, M. Jentschel, U. Köster, F. Negoita, V. Zamfir, Proc. SPIE 8079, 80791H (2011)

    Article  ADS  Google Scholar 

  25. http://www.eli-np.ro/ (2015)

  26. IAEA Nuclear data services. https://www-nds.iaea.org/exfor/exfor.htm and https://www-nds.iaea.org/exfor/endf.htm

  27. I. Gheorghe et al., Laser Compton scattering simulation code (to be published)

  28. S. Agostinelli, and Geant4 Collaboration. Nucl. Instr. Methods A 506, 250 (2003)

  29. M. Herman, R. Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A. Trkov, H. Wienke, V. Zerkin, EMPIRE: nuclear reaction model code system for data evaluation. Nuclear Data Sheets 108, 2655 (2007). www-nds.iaea.org/empire/index.html

  30. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Ge Zhigang, S. Yinlu Han, J. Kailas, V.M. Kopecky, G. Maslov, M. Reffo, E. Sin, Sh Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  31. A.J. Koning, D. Rochman. ftp://ftp.nrg.eu/pub/www/talys/tendl2010/tendl2010.html

  32. G. Rusev, R. Schwengner, R. Beyer, M. Erhard, E. Grosse, A.R. Junghans, K. Kosev, C. Nair, K.D. Schilling, A. Wagner, F. Dönau, S. Frauendorf, Phys. Rev. C 79, 061302 (2009)

    Article  ADS  Google Scholar 

  33. H. Utsunomiya, S. Goriely, T. Kondo, C. Iwamoto, H. Akimune, T. Yamagata, H. Toyokawa, H. Harada, F. Kitatani, Y.-W. Lui, A.C. Larsen, M. Guttormsen, P.E. Koehler, S. Hilaire, S. Pru, M. Martini, A.J. Koning, Phys. Rev. C 88, 015805 (2013)

    Article  ADS  Google Scholar 

  34. H. Beil, R. Bergère, P. Carlos, A. Leprêtre, A. De Miniac, A. Veyssière, Nucl. Phys. A 227, 427–449 (1974)

    Article  ADS  Google Scholar 

  35. T. Shizuma, H. Utsunomiya, P. Mohr, T. Hayakawa, S. Goko, A. Makinaga, H. Akimune, T. Yamagata, M. Ohta, H. Ohgaki, Y.-W. Lui, H. Toyokawa, A. Uritani, S. Goriely, Phys. Rev. C 72, 025808 (2005)

    Article  ADS  Google Scholar 

  36. A.M. Goryachev, G.N. Zalesny, S.F. Smeenko, B.A. Tulupov, Yadernaya Fizika 17, 463 (1973)

    Google Scholar 

  37. A.M. Ballangrud, W.-H. Yang, St Palm, R. Enmon, P.E. Borchardt, V.A. Pellegrini, M.R. McDevitt, D.A. Scheinberg, G. Sgouros, Clin. Cancer Res. 10, 4489 (2004)

    Article  Google Scholar 

  38. F.B. van Gog, G.W.M. Visser, R. Klok, R. van der Schors, G.B. Snow, G.A.M.S. van Dongen, J. Nucl. Med. 37, 352–362 (1996)

    Google Scholar 

  39. Jac M.S.P. Quirijnen, Shiuw H. Han, Bernard A. Zonnenberg, John M.H. de Kierk, Alfred D. van het Schip, Aalt van Dijk, Herman F.J. ten Kroode, Geert H. Blijham, Peter P. van Rijk, J. Nucl. Med. 37, 1511–1515 (1996)

    Google Scholar 

  40. J.J. Carroll, M.J. Byrd, D.G. Richmond, T.W. Sinor, K.N. Taylor, W.L. Hodge, Y. Paiss, C.D. Eberhard, J.A. Anderson, C.B. Collins, Phys. Rev. C 43, 1238 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Extreme Light Infrastructure – Nuclear Physics (ELI–NP)-Phase I, a project co-financed by the European Union through the European Regional Development Fund. WL thanks the supports from the National Natural Science Foundation of China (Grant No. 11405083) and the Young Talent Project of the University of South China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Luo or Mariana Bobeica.

Additional information

Mariana Bobeica: Contributing first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Bobeica, M., Gheorghe, I. et al. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure – Nuclear Physics facility. Appl. Phys. B 122, 8 (2016). https://doi.org/10.1007/s00340-015-6292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6292-9

Keywords

Navigation