Skip to main content
Log in

Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The paper presents a study of the effect of excitation conditions in a CuBr vapor brightness amplifier in a monostatic laser monitor on the radial non-uniformity of the radiation bearing the information about the object being visualized. A significant dependence of radial signal distribution on the concentrations of CuBr, HBr and pumping power has been demonstrated. In particular, an increase in CuBr vapor concentration causes the gain profile of the active medium to constrict and the axial gain to increase. The conditions for the most uniform radial distribution of the laser monitor signal are substantially different from those for the maximum radiated power. The paper demonstrates HBr doping to be usable as a tool to correct the non-uniformity of the radial distribution of laser monitor radiation. An addition of ~0.15 Torr HBr broadens and flattens the radiation profile, improving an important aspect of laser monitor image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.I. Zemskov, M.A. Kazaryan, V.M. Matveev, G.G. Petrash, M.P. Samsonova, A.S. Skripnichenko, Sov. J. Quantum Electron. 14, 288 (1984)

    Article  ADS  Google Scholar 

  2. V.M. Batenin, I.I. Klimovsky, L.A. Selezneva, Sov. Phys. Dokl. 33, 949 (1988)

    ADS  Google Scholar 

  3. D.V. Abramov, S.M. Arakelyan, A.F. Galkin, I.I. Klimovskii, A.O. Kucherik, V.G. Prokoshev, Quantum Electron. 36, 569 (2006)

    Article  ADS  Google Scholar 

  4. R.O. Buzhinsky, V.V. Savransky, K.I. Zemskov, A.A. Isaev, O.I. Buzhinsky, Plasma Phys. Rep. 36, 1269 (2010)

    Article  ADS  Google Scholar 

  5. V.M. Yermachenko, A.P. Kuznetsov, V.N. Petrovskiy, N.M. Prokopova, A.P. Streltsov, S.A. Uspenskiy, Laser Phys. 21, 1530 (2011)

    Article  Google Scholar 

  6. M.V. Trigub, N.A. Agapov, G.S. Evtushenko, F.A. Gubarev, Russ. Phys. J. 56, 588 (2013)

    Article  Google Scholar 

  7. G.S. Evtushenko, M.V. Trigub, F.A. Gubarev, T.G. Evtushenko, S.N. Torgaev, D.V. Shiyanov, Rev. Sci. Instrum. 85, 033111 (2014)

    Article  ADS  Google Scholar 

  8. D.V. Rybka, M.V. Trigub, D.A. Sorokin, G.S. Evtushenko, V.F. Tarasenko, Atmos. Ocean. Opt. 27, 582 (2014)

    Article  Google Scholar 

  9. F.B.J. Buchkremer, A.J. Andrews, D.W. Coutts, C.E. Webb, Technical Digest of Papers Presented at The Thirteenth UK National Quantum Electronics Conference (University of Wales, Cardiff, 1997), p. 116

    Google Scholar 

  10. C.E. Little, N.V. Sabotinov (eds.), Pulsed Metal Vapour Lasers (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  11. C.E. Little (ed.), Metal Vapor Lasers: Physics, Engineering and Applications (Willey, Chichester, 1998)

    Google Scholar 

  12. G.G. Petrash (ed.), Optical Systems with Brightness Amplifiers (Nauka, Moscow, 1991)

    Google Scholar 

  13. Z. Xiao, G. Zhang, X. Song, G. Chen, F. Lin, Chin. J. Lasers 19, 712 (1992)

  14. Z. Meng, G. Zhang, X. Song, J. Jiang, F. Lin, Chin. J. Lasers B 6, 91 (1997)

    Google Scholar 

  15. Z. Xiao, G. Zhang, F. Lin, Appl. Opt. 31, 3395 (1992)

  16. F. Lin, Proc. SPIE 2513, 499 (1995)

    Article  ADS  Google Scholar 

  17. M.A. Kazaryan, Optical systems with image brightness amplifiers. Dissertation ScD, P.N. Lebedev Physical Institute, 1987

  18. F.A. Gubarev, V.O. Troitskiy, M.V. Trigub, V.B. Sukhanov, Opt. Commun. 284, 2565 (2011)

    Article  ADS  Google Scholar 

  19. G.N. Tiwari, R.K. Mishra, R. Khare, S.V. Nakhe, Pramana J. Phys. 82, 217 (2014)

    Article  ADS  Google Scholar 

  20. D.J.W. Brown, M.J. Withford, J.A. Piper, IEEE J. Quantum Electron. 37, 518 (2001)

    Article  ADS  Google Scholar 

  21. D.N. Astadjov, S.V. Nakhe, J. Phys: Conf. Ser. 253, 012076 (2010)

    ADS  Google Scholar 

  22. A.P. Kuznetsov, R.O. Buzhinskij, K.L. Gubskii, A.S. Savjolov, S.A. Sarantsev, A.N. Terekhin, Plasma Phys. Rep. 36, 428 (2010)

    Article  ADS  Google Scholar 

  23. S.N. Torgaev, F.A. Gubarev, A.M. Boichenko, G.S. Evtushenko, O.V. Zhdaneev, Russ. Phys. J. 54, 221 (2011)

    Article  Google Scholar 

  24. F.A. Gubarev, G.S. Evtushenko, N.K. Vuchkov, V.B. Sukhanov, D.V. Shiyanov, Rev. Sci. Instrum. 83, 055111 (2012)

    Article  ADS  Google Scholar 

  25. V.A. Dimaki, V.B. Sukhanov, V.O. Troitskii, A.G. Filonov, Instrum. Exp. Tech. 55, 696 (2012)

    Article  Google Scholar 

  26. D.V. Shiyanov, V.B. Sukhanov, G.S. Evtushenko, O.S. Andrienko, Quantum Electron. 34, 625 (2004)

    Article  ADS  Google Scholar 

  27. A.G. Filonov, D.V. Shiyanov, Instrum. Exp. Tech. 56, 349 (2013)

    Article  Google Scholar 

  28. D.N. Astadjov, N.V. Sabotinov, N.K. Vuchkov, Opt. Commun. 56, 279 (1985)

    Article  ADS  Google Scholar 

  29. M.J. Withford, D.J.W. Brown, J.A. Piper, Opt. Commun. 110, 699 (1994)

    Article  ADS  Google Scholar 

  30. D.N. Astadjov, N.K. Vuchkov, K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash, N.V. Sabotinov, Sov. J. Quantum Electron. 15, 457 (1988)

    Article  ADS  Google Scholar 

  31. M.J. Withford, D.J.W. Brown, R.J. Carman, J.A. Piper, Opt. Commun. 135, 164 (1997)

    Article  ADS  Google Scholar 

  32. R.J. Carman, M.J. Withford, D.J.W. Brown, J.A. Piper, Opt. Commun. 157, 99 (1998)

    Article  ADS  Google Scholar 

  33. M.J. Withford, D.J.W. Brown, R.P. Mildren, R.J. Carman, G.D. Marshall, J.A. Piper, Prog. Quantum Electron. 28, 165 (2004)

    Article  ADS  Google Scholar 

  34. M.J. Withford, D.J.W. Brown, R.J. Carman, J.A. Piper, Opt. Commun. 154, 160 (1998)

    Article  ADS  Google Scholar 

  35. M. Kocik, M. Mohamed-Seghir, J. Mizeraczyk, Proc. SPIE 3571, 135 (1999)

    Article  ADS  Google Scholar 

  36. F.A. Gubarev, V.B. Sukhanov, G.S. Evtushenko, V.F. Fedorov, D.V. Shiyanov, IEEE J. Quantum Electron. 45, 171 (2009)

    Article  ADS  Google Scholar 

  37. R.J. Carman, R.P. Mildren, M.J. Withford, D.J.W. Brown, J.A. Piper, IEEE J. Quantum Electron. 36, 438 (2000)

    Article  ADS  Google Scholar 

  38. R.J. Carman, J. Appl. Phys. 82, 71 (1997)

    Article  ADS  Google Scholar 

  39. C. Cheng, S. Wei, Opt. Quantum Electron. 28, 405 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. E. Levitskii for the technical support. The author, Miron Klenovskii, is expressing his gratitude to the Tomsk Polytechnic University for the opportunity to conduct scientific research in the TPU postdoctoral program. The work was supported by the Russian Science Foundation, Project No. 14-19-00175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Gubarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubarev, F.A., Trigub, M.V., Klenovskii, M.S. et al. Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors. Appl. Phys. B 122, 2 (2016). https://doi.org/10.1007/s00340-015-6288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6288-5

Keywords

Navigation