Skip to main content
Log in

Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have experimentally implemented a narrow-linewidth source of greatly non-degenerate single photon pairs at the wavelengths of 894.6 nm (D1 transition line of cesium) and 1312.5 nm (telecommunications band). Based on spontaneous parametric down-conversion, the photon pairs are generated from a periodically poled lithium niobate crystal embedded in an optical cavity that is singly resonant for 894.6 nm. The cavity modes show a linewidth of 48 MHz and are separated by a large cavity free spectral range of 4.5 GHz. We use volume Bragg grating and sum-frequency-generation phase-matching filters to select a small number of modes in the signal and idler channel. The detected coincidence rate is 4.9 S−1 mW −1pump MHz −1SPDC from the resonant cavity modes. This source may actively interface between flying qubits in the 1310 nm telecommunications band and stationary qubits at the atomic wavelength of cesium for quantum repeater applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Gisin, R. Thew, Nat. Photon. 1, 165 (2007)

    Article  ADS  Google Scholar 

  2. A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  3. J. Fekete, D. Rielandes, M. Cristiani, H. de Riedmatten, Phys. Rev. Lett. 110, 220502 (2013)

    Article  ADS  Google Scholar 

  4. D.A. Steck, Cesium D Line Data, Technical report from Los Alamos National Laboratory. http://steck.us/alkalidata/cesiumnumbers.1.6.pdf

  5. D. Hockel, O. Benson, Phys. Rev. Lett. 105, 153605 (2010)

    Article  ADS  Google Scholar 

  6. Y. Hsiao, C. Lee, B. Tsai, H. Chen, Y. Chen, I. Yu, Y. Chen, Poster at IAMS 2014. http://www.iams.sinica.edu.tw/project/ycchen/files/2014wu_li_nian_hui_poster7.pdf

  7. S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, N. Gisin, Eur. Phys. J. D 18, 155–160 (2002)

    ADS  Google Scholar 

  8. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  9. L. Ma, O. Slattery, T. Chang, X. Tang, Opt. Express 17(18), 15799–15807 (2009)

    Article  ADS  Google Scholar 

  10. Z.Y. Ou, Y.L. Lu, Phys. Rev. Lett. 83, 2556–2559 (2000)

    Article  ADS  Google Scholar 

  11. P. Hariharan, B.C. Sanders, J. Mod. Opt. 47, 1739–1744 (2000)

    Article  ADS  Google Scholar 

  12. Z.Y. Ou, Y.J. Lu, Phys. Rev. Lett. 83, 2556–2559 (1999)

    Article  ADS  Google Scholar 

  13. J.S. Neergaard-Nielsen, B. Melholt Nielsen, H. Takahashi, A.I. Vistnes, E.S. Polzik, Opt. Express 15, 7940–7949 (2007)

    Article  ADS  Google Scholar 

  14. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A.M. Steinberg, W.M. Mitchell, Opt. Express 16, 18145–18151 (2008)

    Article  ADS  Google Scholar 

  15. C.E. Kuklewicz, F.N.C. Wong, J.H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006)

    Article  ADS  Google Scholar 

  16. H. Wang, T. Horikiri, T. Kobayashi, Phys. Rev. A 70, 043804 (2004)

    Article  ADS  Google Scholar 

  17. M. Scholz, L. Koch, R. Ullmann, O. Benson, Appl. Phys. Lett. 94, 201105 (2009)

    Article  ADS  Google Scholar 

  18. M. Scholz, L. Koch, O. Benson, Phys. Rev. Lett. 102, 063603 (2009)

    Article  ADS  Google Scholar 

  19. X. Bao, Y. Qian, J. Yang, H. Zhang, Z. Chen, T. Tang, J. Pan, Phys. Rev. Lett. 101, 190501 (2008)

    Article  ADS  Google Scholar 

  20. C.E. Kuklewicz, E. Keskiner, F.N.C. Wong, J.H. Shapiro, J. Opt. B Quantum Semiclass. Opt. 4, S162–S168 (2002)

    Article  ADS  Google Scholar 

  21. F. Monteiro, A. Martin, B. Sanguinetti, H. Zbinden, R.T. Thew, Opt. Express 22, 4371–4378 (2014)

    Article  ADS  Google Scholar 

  22. J.H. Shapiro, C.E. Kuklewicz, F.N.C. Wong, OSA/ NLO 2004, TuA5 (2004)

  23. U. Herzog, M. Scholz, O. Benson, Phys. Rev. A 77, 023826 (2008)

    Article  ADS  Google Scholar 

  24. M. Scholz, F. Wolfgramm, U. Herzog, O. Benson, Appl. Phys. Lett. 91, 191104 (2007)

    Article  ADS  Google Scholar 

  25. Using Sellmeier equations for PPLN from http://unitedcrystals.com/LiNbO3Prop.html

  26. M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  27. R.V. Pound, Rev. Sci. Instrum. 17, 490–505 (1946)

    Article  ADS  Google Scholar 

  28. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  29. E. Black, Am. J. Phys. 69, 79–87 (2001)

    Article  ADS  Google Scholar 

  30. G.D. Byod, D.A. Kleinman, J. Appl. Phys. 39, 3597–3641 (1968)

    Article  ADS  Google Scholar 

  31. H. Abitan, T. Skettrup, J. Opt. A Pure Appl. Opt. 7, 7–20 (2005)

    Article  ADS  Google Scholar 

  32. J. Xia, M.H. Lee, Appl. Opt. 41, 453–458 (2002)

    Article  ADS  Google Scholar 

  33. L. Ma, O. Slattery, X. Tang, Laser Phys. 20, 1244–1250 (2010)

    Article  ADS  Google Scholar 

  34. A.L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, A. Smirnov, L.B. Glebov, in Proceeding s of SPIE, vol. 8428, 8428C (2012)

  35. O. Slattery, P. Kuo, Y. Kim, L. Ma, X. Tang, in Proceedings of SPIE 8518, 85180Y1-10 (2012)

  36. O. Slattery, L. Ma, P. Kuo, Y.-S. Kim, X. Tang, Laser Phys. Lett. 10, 075201 (2013)

    Article  ADS  Google Scholar 

  37. E. Pomarico, B. Sanguinetti, T. Guerreiro, R. Thew, H. Zbinden, Opt. Express 20, 23846 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yong-Su Kim for his help in the design of the cavity locking scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Tang.

Additional information

The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slattery, O., Ma, L., Kuo, P. et al. Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity. Appl. Phys. B 121, 413–419 (2015). https://doi.org/10.1007/s00340-015-6198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6198-6

Keywords

Navigation