Skip to main content
Log in

Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two concepts of dual-wavelength 785-nm DBR ridge waveguide (RW) lasers, i.e. RW mini-arrays consisting of two DBR-RW lasers and Y-branch DBR-RW lasers, will be compared with respect to their usability as excitation light sources for shifted excitation Raman difference spectroscopy (SERDS). For both types of devices for each wavelength, output powers up to 215 mW were measured. A stable spectral distance between the laser emissions of the two resonator branches with the targeted value of 0.6 nm, i.e. 10 cm−1, is observed. In the case of the mini-array up to an output power of about 70 mW, the device shows single-mode operation. Although at higher power levels, mode hops and multi-mode operation occur, the emission width smaller than 0.15 nm still meets the requirements for Raman measurements of solids and liquids. Over the whole working range, the spectral distance between the two wavelengths is approximately constant with 0.62 nm. The near field shows two emission spots according to the dimension of the RW and their processed distance of 20 µm. The Y-branch laser shows single-mode operation up to 150 mW with a narrow spectral emission width. At higher powers also, multi-mode operation with an emission width of 0.15 nm occurs. The nearly diffraction-limited emission comes from one output aperture; the far-field emission shows a pronounced asymmetry between the two branches. Both types of devices fulfil the spectral requirements from Raman spectroscopy and SERDS up to 215 mW output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.A. Mosier-Boss, S.H. Liebermann, R. Newberry, Appl. Spec. 49, 630–638 (1995)

    Article  ADS  Google Scholar 

  2. J. Zhao, M.M. Carrabba, F. Allen, Appl. Spec. 56, 834–845 (2002)

    Article  ADS  Google Scholar 

  3. P. Shreve, N.J. Cherepy, R.A. Mathies, Appl. Spec. 46, 707–711 (1992)

    Article  ADS  Google Scholar 

  4. R. L. McCreery, Raman spectroscopy for chemical analysis. Chemical Analysis, 157, Instrumentation overview and spectrometer performance (Wiley, New York, 2000), pp. 91

  5. M. Maiwald, H, Schmidt, B, Sumpf, G. Erbert, H.-D. Kronfeldt, G. Tränkle, Appl. Opt. 48, 2789–2792 (2009)

  6. M. Uemukai, H. Ishida, A. Ito, T. Suhara, H. Kitajima, A. Watanabe, H. Kann, 22nd IEEE International Semiconductor Laser Conference (ISLC), 2010, pp. 61–62 (2010)

  7. O. Hildebrand, M. Schilling, D. Baums, W. Idler, K. Dutting, G. Laube, K. Winstel, J. Lightwave Tech. 11, 2066–2075 (1993)

    Article  ADS  Google Scholar 

  8. R.K. Price, V.B. Verma, K.E. Tobin, V.C. Elarde, J.J. Coleman, IEEE Photon. Technol. Lett. 19, 1610–1612 (2007)

    Article  ADS  Google Scholar 

  9. M. Uemukai, H. Ishida, A. Ito, T. Suhara, H. Kitajima, A. Watanabe, H. Kan, Jpn. J. Appl. Phys. 51, 020205-1–020205-3 (2012)

  10. M. Maeda, T. Hirata, M. Suehiro, M. Hihara, A. Yamaguchi, H. Hosomatsu, Jpn. J. Appl. Phys. 31, L183–L185 (1992)

    Article  ADS  Google Scholar 

  11. J. Fricke, A. Klehr, O. Brox, W. John, A. Ginolas, P. Ressel, L. Weixelbaum, G. Erbert, Semicond. Sci. Technol. 28, 035009 (2013)

    Article  ADS  Google Scholar 

  12. D. Feise, W. John, F. Bugge, G. Blume, T. Hassoun, J. Fricke, K. Paschke, G. Erbert, 96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface gratings. Opt. Lett. 37(9), 1532–1534 (2012)

    Article  ADS  Google Scholar 

  13. L. Jiang, M. Achtenhagen, N.V. Amarasinghe, P. Young, G. Evans, High-power DBR laser diodes grown in a single epitaxial step. SPIE Proc. 7230, 72301F (2009)

    Article  ADS  Google Scholar 

  14. B. Sumpf, J. Fricke, M. Maiwald, A. Müller, P. Ressel, F. Bugge, G. Erbert and G. Tränkle, Wavelength stabilized 785 nm DBR-ridge waveguide lasers with an output power of up to 215 mW. Semicond. Sci. Technol. 29, 045025 (2014)

  15. M. Maiwald, J. Fricke, A. Ginolas, J. Pohl, B. Sumpf, G. Erbert, G. Tränkle, Dual-wavelength monolithic Y-branch distributed Bragg reflection diode laser at 671 nm suitable for shifted excitation Raman difference spectroscopy. Laser Photonics Rev. 7(4), L30–L33 (2013)

    Article  Google Scholar 

  16. B. Sumpf, M. Maiwald, A. Müller, F. Bugge, J. Fricke, P. Ressel, J. Pohl, G. Erbert, G. Tränkle Red Emitting Monolithic Dual Wavelength DBR Diode Lasers for Shifted Excitation Raman Difference Spectroscopy Novel In-Plane Semiconductor Lasers XIII, ed. by Alexey A. Belyanin, Peter M. Smowton. Proceedings of SPIE Vol. 9002, 900208 (2014)

  17. M. Maiwald, B. Eppich, J. Fricke, A. Ginolas, F. Bugge, B. Sumpf, G. Erbert, G. Tränkle, Dual-wavelength Y-branch distributed Bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy. Appl. Spectrosc. 68(8), 838–843 (2014)

    Article  ADS  Google Scholar 

  18. G. Erbert, F. Bugge, A. Knauer, J. Sebastian, A. Thies, H. Wenzel, M. Weyers, G. Tränkle, „High-power tensile-strained GaAsP-AlGaAs quantum-well lasers emitting between 715 and 790 nm. IEEE J. Sel. Top. Quantum Electron. 5, 780–784 (1999)

    Article  Google Scholar 

  19. P.-L. Liu, B.-J. Li, P.J. Cressman, J.R. Debesis, S. Stoller, Comparison of measured losses of Ti:LiNbO3 channel waveguide bends. IEEE Photonics Technol. Lett. 3, 755–756 (1991)

    Article  ADS  Google Scholar 

  20. R. B. Swint, T. S: Yeoh, V. C. Elarde, J. J. Coleman, M. S. Zediker, Curved waveguides for spatial mode filters in semiconductor lasers. IEEE Photonics Technol. Lett. 16, 12–14 (2004)

  21. R.G. Walker, N.I. Cameron, Y. Zhou, S.J. Clements, Optimized gallium arsenide modulators for advanced modulation formats. IEEE J. Sel. Top. Quantum Electron. 19, 3400912 (2013)

    Google Scholar 

  22. P. Ressel, G. Erbert, U. Zeimer, K. Häusler, G. Beister, B. Sumpf, A. Klehr, G. Tränkle, Novel passivation process for the mirror facets of high-power semiconductor diode lasers. IEEE Photonics Technol. Lett. 17, 962–964 (2005)

    Article  ADS  Google Scholar 

  23. H. Ahmad, B. Sumpf, K. Sowoidnich, A. Klehr, H.-D. Kronfeldt, Insitu Raman setup for deep ocean investigations applying two 1000 m optical fiber cables and a 785 nm high power diode laser. Mar. Sci. 2, 132–138 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical support of J. Hopp, P. Brade, S. Ullrich, O. Bauer, S. Wiechmann, and R. Olschewsky as well at the financial support within the project DiLaRa VIP0158/03V0207 supported by the Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Sumpf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumpf, B., Maiwald, M., Müller, A. et al. Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy. Appl. Phys. B 120, 261–269 (2015). https://doi.org/10.1007/s00340-015-6133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6133-x

Keywords

Navigation