Skip to main content
Log in

Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.J.M. Gopaul, Multiplexed diode-laser sensor system for simultaneous H2O, O2 and temperature measurements. Opt. Lett. 19, 1900–1902 (1994)

    Article  ADS  Google Scholar 

  2. S.T. Sanders, Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Appl. Phys. B 75, 799–802 (2002)

    Article  ADS  Google Scholar 

  3. C.F. Kaminski, R.S. Watt, A.D. Elder, J.H. Frank, J. Hult, Supercontinuum radiation for applications in chemical sensing and microscopy. Appl. Phys. B 92, 367–378 (2008)

    Article  ADS  Google Scholar 

  4. N.J. Vasa, M. Singaperumal, Gas sensors based on superluminescent diodes for combustion monitoring. Appl. Opt. 48, G1–G5 (2009)

    Article  Google Scholar 

  5. G. Somesfalean, M. Sjöholm, L. Persson, H. Gao, T. Svensson, S. Svanberg, Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers. Appl. Phys. Lett. 86, 184102 (2005)

    Article  ADS  Google Scholar 

  6. X. Lou, G. Somesfalean, Z. Zhang, Gas detection by correlation spectroscopy employing a multimode diode laser. Appl. Opt. 47, 2392–2398 (2008)

    Article  ADS  Google Scholar 

  7. X.T. Lou, G. Somesfalean, B. Chen, Y.G. Zhang, H.S. Wang, Z.G. Zhang, S.H. Wu, Y.K. Qin, Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser. Opt. Lett. 35, 1749 (2010)

    Article  ADS  Google Scholar 

  8. S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007)

    Article  Google Scholar 

  9. A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012)

    Article  ADS  Google Scholar 

  10. A. Hugi, G. Villares, S. Blaser, H.C. Liu, J. Faist, Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012)

    Article  ADS  Google Scholar 

  11. I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, P. De Natale, Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy. Opt. Lett. 39, 5050–5053 (2014)

    Article  ADS  Google Scholar 

  12. F. Zhu, H. Hundertmark, A.A. Kolomenskii, J. Strohaber, R. Holzwarth, H.A. Schuessler, High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator. Opt. Lett. 38, 2360–2363 (2013)

    Article  ADS  Google Scholar 

  13. Y. Wang, M.G. Soskind, W. Wang, G. Wysocki, High-resolution multi-heterodyne spectroscopy based on Fabry–Perot quantum cascade lasers. Appl. Phys. Lett. 104, 031114 (2014)

    Article  ADS  Google Scholar 

  14. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. ChrisBenner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  15. Y. Arita, P. Ewart, Multi-mode absorption spectroscopy. Opt. Commun. 281, 2561–2566 (2008)

    Article  ADS  Google Scholar 

  16. J.H. Northern, A.W.J. Thompson, M.L. Hamilton, P. Ewart, Multi-species detection using multi-mode absorption spectroscopy, MUMAS. Appl. Phys. B 111, 627–635 (2013)

    Article  ADS  Google Scholar 

  17. Y. Arita, R. Stevens, P. Ewart, Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure. Appl. Phys B 90, 205–211 (2008)

    Article  ADS  Google Scholar 

  18. Y. Arita, P. Ewart, Infra-red multi-mode absorption spectroscopy of acetylene using an Er/Yb:glass micro-laser. Opt. Express 16, 4437–4442 (2008)

    Article  ADS  Google Scholar 

  19. A.W.J. Thompson, J.H. Northern, B.A.O. Williams, M.L. Hamilton, P. Ewart, Simultaneous detection of CO2 and CO in engine exhaust using multi-mode absorption spectroscopy, MUMAS. Sens. Actuators B Chem. 198, 309–315 (2014)

    Article  Google Scholar 

  20. K.P. Petrov, S. Waltman, U. Simon, R.F. Curl, F.K. Tittel, E.J. Dlugokencky, L. Hollberg, Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm. Appl. Phys. B 61, 553 (1995)

    Article  ADS  Google Scholar 

  21. K.P. Petrov, S. Waltman, E.J. Dlugokencky, M. Arbore, M.M. Fejer, F.K. Tittel, L.W. Hollberg, Precise measurement of methane in air using diode-pumped 3.4 μm difference-frequency generation in PPLN. Appl. Phys. B 64, 567 (1997)

    Article  ADS  Google Scholar 

  22. M. Takahashi, S. Ohara, T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, Trace gas monitor based on difference frequency generation at 4 μm using mass-production laser diodes as pump and signal light sources. Appl. Phys. B 78, 229 (2004)

    Article  ADS  Google Scholar 

  23. L. Hvozdara, N. Pennington, M. Kraft, M. Karlowatz, B. Mizaiko, Quantum cascade lasers for mid-infrared spectroscopy. Vib. Spectrosc. 30, 53–58 (2002)

    Article  Google Scholar 

  24. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. Curl, Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 90, 165–176 (2007)

    Article  ADS  Google Scholar 

  25. I. Vurgaftman, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, J. Abell, J.R. Meyer, Mid-infrared interband cascade lasers operating at ambient temperatures. New J. Phys. 11, 125015 (2009)

    Article  ADS  Google Scholar 

  26. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Power-boosted difference-frequency source for high-resolution infrared spectroscopy. Appl. Phys. B 76, 473–477 (2003)

    Article  ADS  Google Scholar 

  27. M.C. Broyer, M. Chu, Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams. J. Physique 46, 523–533 (1985)

    Google Scholar 

  28. M.L. Hamilton, G.A.D. Ritchie, Y. Arita, P. Ewart, Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques. Appl. Phys. B 100, 665–673 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northern, H., O’Hagan, S., Hamilton, M.L. et al. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation. Appl. Phys. B 118, 343–351 (2015). https://doi.org/10.1007/s00340-014-5989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5989-5

Keywords

Navigation