Skip to main content
Log in

Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate single-mode laser operation in dye-doped holographic polymer-dispersed liquid crystal (HPDLC) transmission gratings. The gratings are fabricated in cells made from specifically chosen glass substrates to decrease the refractive index difference between the waveguide core layer and cladding layer. The phase separation degree of liquid crystal after holographic recording is further optimized to confine only the lowest propagation mode in the device. The mode selection mechanism is explained under the framework of the waveguide distributed feedback (DFB) theory. The wavelength of single-mode lasing can be tuned between 620 and 660 nm by varying the grating period. Our results show the HPDLC technique could provide single-mode organic DFB lasers in a tunable, simple, and large-area manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Oki, S. Miyamoto, M. Maeda, N.J. Vasa, Opt. Lett. 27, 1220 (2002)

    Article  ADS  Google Scholar 

  2. Y. Yang, G.A. Turnbull, I.D.W. Samuel, Adv. Funct. Mater. 20, 2093 (2010)

    Article  Google Scholar 

  3. J. Clark, G. Lanzani, Nat. Photon. 4, 438 (2010)

    Article  ADS  Google Scholar 

  4. S. Chénais, S. Forget, Polym. Int. 61, 390 (2012)

    Article  Google Scholar 

  5. I.D.W. Samuel, G.A. Turnbull, Chem. Rev. 107, 1272 (2007)

    Article  Google Scholar 

  6. A.Y.-G. Fuh, T.-H. Lin, J.-H. Liu, F.-C. Wu, Opt. Express 12, 1857 (2004)

    Article  ADS  Google Scholar 

  7. B. Liu, Z. Zheng, X. Chen, D. Shen, Opt. Mater. Express 3, 519 (2013)

    Article  Google Scholar 

  8. M.I. Barnik, L.M. Blinov, V.V. Lazarev, S.P. Palto, B.A. Umanskii, N.M. Shtykov, J. Appl. Phys. 103, 123113 (2008)

    Article  ADS  Google Scholar 

  9. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, K. Yoshino, Adv. Mater. 14, 306 (2002)

    Article  Google Scholar 

  10. T.-H. Lin, Y.-J. Chen, C.-H. Wu, A.Y.-G. Fuh, J.-H. Liu, P.-C. Yang, Appl. Phys. Lett. 86, 161120 (2005)

    Article  ADS  Google Scholar 

  11. R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, H. Moritake, Appl. Phys. Express 1, 012003 (2008)

    Article  ADS  Google Scholar 

  12. L. Chen, Z. Liu, K. Che, Y. Bu, S. Li, Q. Zhou, H. Xu, Z. Cai, Thin Solid Films 520, 2971 (2012)

    Article  ADS  Google Scholar 

  13. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, U. Lemmer, Appl. Phys. Lett. 99, 023307 (2011)

    Article  ADS  Google Scholar 

  14. T. Matsui, M. Ozaki, K. Yoshino, Jpn. J. Appl. Phys. 42, L1462 (2003)

    Article  ADS  Google Scholar 

  15. L.M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V.V. Lazarev, S.P. Palto, Appl. Phys. Lett. 90, 131103 (2007)

    Article  ADS  Google Scholar 

  16. R.L. Sutherland, L.V. Natarajan, V.P. Tondiglia, Chem. Mater. 5, 1533 (1993)

    Article  Google Scholar 

  17. R. Jakubiak, T.J. Bunning, R.A. Vaia, L.V. Natarajan, V.P. Tondiglia, Adv. Mater. 15, 241 (2003)

    Article  Google Scholar 

  18. V.K.S. Hsiao, C. Lu, G.S. He, M. Pan, A.N. Cartwright, P.N. Prasad, R. Jakubiak, R.A. Vaia, T.J. Bunning, Opt. Express 13, 3787 (2005)

    Article  ADS  Google Scholar 

  19. Y.J. Liu, X.W. Sun, H.I. Elim, W. Ji, Appl. Phys. Lett. 90, 011109 (2007)

    Article  ADS  Google Scholar 

  20. W. Huang, Z. Diao, L. Yao, Z. Cao, Y. Liu, J. Ma, L. Xuan, Appl. Phys. Express 6, 022702 (2013)

    Article  ADS  Google Scholar 

  21. D.E. Lucchetta, L. Criante, O. Francescangeli, F. Simoni, Appl. Phys. Lett. 84, 837 (2004)

    Article  ADS  Google Scholar 

  22. D. Luo, X.W. Sun, H.T. Dai, H.V. Demir, H.Z. Yang, W. Ji, J. Appl. Phys. 108, 013106 (2010)

    Article  ADS  Google Scholar 

  23. R. Jakubiak, V.P. Tondiglia, L.V. Natarajan, R.L. Sutherland, P. Lloyd, T.J. Bunning, R.A. Vaia, Adv. Mater. 17, 2807 (2005)

    Article  Google Scholar 

  24. M.S. Li, A.Y.-G. Fuh, S.-T. Wu, Opt. Lett. 37, 3249 (2012)

    Article  ADS  Google Scholar 

  25. T. Matsui, M. Ozaki, K. Yoshino, J. Opt. Soc. Am. B 21, 1651 (2004)

    Article  ADS  Google Scholar 

  26. K.K. Vardanyan, J. Qi, J.N. Eakin, M.D. Sarkar, G.P. Crawford, Appl. Phys. Lett. 81, 4736 (2002)

    Article  ADS  Google Scholar 

  27. W. Huang, Y. Liu, Z. Diao, C. Yang, L. Yao, J. Ma, L. Xuan, Appl. Opt. 51, 4013 (2012)

    Article  ADS  Google Scholar 

  28. D.E. Lucchetta, F. Vita, R. Castagna, O. Francescangeli, F. Simoni, Photon. Nanostruct. Fundam. Appl. 10, 140 (2012)

    Article  ADS  Google Scholar 

  29. K. Okamoto, Fundamentals of Optical Waveguides (Academic press, Burlington, 2006)

    Google Scholar 

  30. H. Kogelnik, C.V. Shank, Appl. Phys. Lett. 18, 152 (1971)

    Article  ADS  Google Scholar 

  31. Z. Diao, W. Huang, Z. Peng, Q. Mu, Y. Liu, J. Ma, L. Xuan, Liq. Cryst. 41, 239 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liu, Q., Xuan, L. et al. Single-mode lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl. Phys. B 117, 1065–1071 (2014). https://doi.org/10.1007/s00340-014-5927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5927-6

Keywords

Navigation