Skip to main content
Log in

Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Measurements of carbon monoxide (CO) mixing ratios in Houston, Texas, during the period from May 16, 2013 to May 28, 2013 were performed using a sensitive, selective, compact, and portable quartz-enhanced photoacoustic spectroscopy (QEPAS)-based CO sensor employing a high-power continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL). The minimum detectable CO concentration was 3 ppbv for the strong, interference-free R(6) absorption line at 2,169.2 cm−1 and a 5 s data acquisition time. The average CO concentration during the measurement period was 299.1 ± 81.4 ppb with observed minimum and maximum values of 210.5 and 4,307.9 ppb, respectively. A commercially available electrochemical sensor was employed in-line for simultaneous measurements to confirm the response of the CW DFB-QCL-based QEPAS sensor to variations of the CO mixing ratios. Moderate agreement (R 2 = 0.7) was found between both sets of CO measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A.K. Khalil, R.A. Rasmussen, Chemosphere 20, 227 (1990)

    Article  Google Scholar 

  2. J.A. Logan et al., J. Geophys. Res. 86, 7210 (1981)

    Article  ADS  Google Scholar 

  3. K.S. Law, Chemosphere Glob. Change Sci. 1, 263 (1999)

    Article  Google Scholar 

  4. C. Zellweger et al., Atmos. Chem. Phys. 9, 3491 (2009)

    Article  ADS  Google Scholar 

  5. L.K. Weaver, N. Engl. J. Med. 360, 1217 (2009)

    Article  Google Scholar 

  6. An introduction to indoor air quality (IAQ). Carbon monoxide (CO). http://www.epa.gov/iaq/co.html#Sources, United States Environmental Protection Agency, Web., Cited: 07/03/2013

  7. A.A. Kosterev et al., Opt. Lett. 27, 21 (2002)

    Article  Google Scholar 

  8. A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  9. R. Lewicki et al, in The wonder of nanotechnology: quantum optoelectronic devices and applications, Chapter. 23, eds by M. Razeghi, L. Esaki, K.V. Klitzing, (SPIE Press, 2013), pp. 597–632

  10. N. Petra et al., Appl. Phys. B 94, 673 (2009)

    Article  ADS  Google Scholar 

  11. Y. Ma et al., Opt. Express 21, 11338 (2013)

    Article  ADS  Google Scholar 

  12. Q.Y. Lu et al., Appl. Phys. Lett. 97, 04210 (2010)

    Google Scholar 

  13. A.A. Kosterev, T.S. Mosely, F.K. Tittel, Appl. Phys. B 85, 295 (2006)

    Article  ADS  Google Scholar 

  14. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301 (2006)

    Article  ADS  Google Scholar 

  15. A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005)

    Article  ADS  Google Scholar 

  16. University of Houston Moody Tower (UH-MT), www5.tceq.texas.gov/tamis/index.cfm?fuseaction=report.view_site&CAMS=695, Texas Commision on Environmental Quality, Web, Cited: 7/03/2013

  17. W.T. Luke et al., Atmos. Environ. 44, 4068 (2010)

    Article  ADS  Google Scholar 

  18. L. Gong et al., Atmos. Chem. Phys. Discuss. 11, 9721 (2011)

    Article  ADS  Google Scholar 

  19. S.E. Bauman et al., Atmos. Environ. 16, 2489 (1982)

    Article  ADS  Google Scholar 

  20. Y. Qin, S.C. Kot, Atmos. Environ. B Urb. 27, 3 (1993)

    Google Scholar 

  21. M. Väkevä et al., Atmos. Environ. 33, 1385 (1999)

    Article  Google Scholar 

  22. N.M. Zoumakis, Atmos. Environ. 29, 3719 (1995)

    Article  ADS  Google Scholar 

  23. A. Bigi, R.M. Harrison, Atmos. Environ. 44, 2004 (2010)

    Article  ADS  Google Scholar 

  24. M. Rubio et al., Environ. Monit. Assess. 140, 161 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The Rice University group acknowledges financial support from a National Science Foundation (NSF) Grant EEC-0540832 entitled “Mid-Infrared Technologies for Health and the Environment (MIRTHE)”, a NSF-ANR award for international collaboration in chemistry “Next generation of Compact Infrared Laser based Sensor for environmental monitoring (NexCILAS)” and the Robert Welch Foundation Grant C-0586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Tittel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefański, P., Lewicki, R., Sanchez, N.P. et al. Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor. Appl. Phys. B 117, 519–526 (2014). https://doi.org/10.1007/s00340-014-5863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5863-5

Keywords

Navigation