Skip to main content
Log in

Sensitive harmonic detection of ammonia trace using a compact photoacoustic resonator at double-pass configuration and a wavelength-modulated distributed feedback diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A sensitive detection of ammonia in parts per billion by volume is described. The system based on photoacoustic spectroscopy (PAS) consists of distributed feedback laser diode emitting near 1,531.7 nm and a compact PA cell at double-pass configuration. In order to optimize the signal background ratio of the system, two types of modulations were tested, amplitude and wavelength modulations (WM). Using a digital lock-in amplifier, the 1f and 2f detection in WM could be investigated. A detection limit of 470 parts per million by volume could be achieved at WM-2f. In the sense of quantifing the adsorption–desorption process, the response time of the system and detection accuracy was performed in different flows. Response times between 10 and 49 s, depending on the flow rate, were obtained which enables the PA system to measure low concentrations of ammonia with high accuracy in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. MacDonald, N. Clecak, R. Wendt, C.G. Willson, C. Snyder, C. Knors, N. Deyoe, J. Maltabes, J. Morrow, A. McGuire, S. Holmes, Proc. SPIE 1466, 2 (1991)

    Article  ADS  Google Scholar 

  2. K. Pilegaard, J.K. Schjoerring, M.A. Sutton, Biogeoscience 6, 3149–3150 (2009)

    Article  ADS  Google Scholar 

  3. L.R. Narasimhan, W. Gordon, C.K.M. Patel, PNAS 98, 4617–4621 (2001)

    Article  ADS  Google Scholar 

  4. M. Wolff, H. Harde, Infrared Phys. Technol. 41, 283–286 (2000)

    Article  ADS  Google Scholar 

  5. A. Petzold, R. Niessner, Appl. Phys. Lett. 66(10), 1285–1287 (1995)

    Article  ADS  Google Scholar 

  6. Z. Bózóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, F.K. Tittel, Appl. Spectosc. 56(6), 715–719 (2002)

    Article  ADS  Google Scholar 

  7. R.A. Rooth, A.J.L. Verhage, L.W. Wouters, Appl. Opt. 29, 3643 (1990)

    Article  ADS  Google Scholar 

  8. A. Schmohl, A. Miklós, P. Hess, Appl. Opt. 41(9), 1815–1823 (2002)

    Article  ADS  Google Scholar 

  9. W. Zhang, Z. Wu, Q. Yu, Chin. Opt. Lett. 5(11), 677–679 (2007)

    ADS  Google Scholar 

  10. A. Miklós, S. Schäfer, P. Hess, in Encyclopedia of Spectroscopy and Spectrometry, ed. by J.C. Lindon, G.E. Tranter, J.L. Homes (Academic Press, San Diego, 2000), pp. 1815–1822

    Google Scholar 

  11. A. Miklós, P. Hess, Z. Bózóki, Rev. Sci. Instrum. 72(4), 1937–1955 (2001)

    Article  ADS  Google Scholar 

  12. F. Harren, R.J. Reuss, Asads sd, in Encyclopedia of Applied Physics, vol. 19, ed. by G.L. Trigg (VCH, Weinheim, 1997), pp. 413–435

    Google Scholar 

  13. P. Hess, Top. Curr. Chem. 111, 1–32 (1983)

    Article  Google Scholar 

  14. M.W. Sigrist, Rev. Sci. Instrum. 74, 486–490 (2003)

    Article  ADS  Google Scholar 

  15. M.W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley-Interscience Publication, New York, 1994), p. 127

    Google Scholar 

  16. S. Sthéphane, L. Thévenaz, Spectrochim. Acta A 60, 3259–3268 (2004)

    Article  ADS  Google Scholar 

  17. J. Li, X. Gao, L. Fang, Opt. Laser Technol. 39, 1144–1149 (2007)

    Article  ADS  Google Scholar 

  18. J.S. Pilgrim, D.S. Bomse, Wavelength modulated photoacoustic spectrometer. United States Patent number 6,552,792 B1 (2003)

  19. J. Wang, W. Zhang, L. Li, Appl. Phys. B 103(2), 263–269 (2011)

    Article  ADS  Google Scholar 

  20. S. Sthéphane, L. Thévenaz, Infrared Phys. Technol. 48, 154–162 (2006)

    Article  ADS  Google Scholar 

  21. R. Arndt, J. Appl. Phys. 36, 2522–2524 (1965)

    Article  ADS  Google Scholar 

  22. Y. Peng et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 924–927 (2009)

    Article  ADS  Google Scholar 

  23. J. Reid, D. Labrie, Appl. Phys. B 26, 203–210 (1981)

    Article  ADS  Google Scholar 

  24. L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090–6103 (1993)

    Article  ADS  Google Scholar 

  25. J.P. Benson, S. Schilt, L. Thévenaz, Proc. SPIE 5855, 415–418 (2005)

    Article  ADS  Google Scholar 

  26. A. Schmohl, A. Miklós, P. Hess, Appl. Opt. 40, 2571–2578 (2001)

    Article  ADS  Google Scholar 

  27. S.W. Sharpe, T.J. Jhonson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Jhonson, Appl. Spectrosc. 58, 1452–1461 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, G.R., Mota, L., Miklós, A. et al. Sensitive harmonic detection of ammonia trace using a compact photoacoustic resonator at double-pass configuration and a wavelength-modulated distributed feedback diode laser. Appl. Phys. B 117, 333–341 (2014). https://doi.org/10.1007/s00340-014-5840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5840-z

Keywords

Navigation