Skip to main content
Log in

Absorption electronic spectrum of gaseous FeO: in situ detection with intracavity laser absorption spectroscopy in a nanoparticle-generating flame reactor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Absorption measurement of a gas-phase iron oxide (FeO) electronic spectrum is reported for the first time. FeO was obtained in a methane/oxygen/nitrogen flame doped with iron pentacarbonyl and monitored via the 611-nm band of the orange system with intracavity laser absorption spectroscopy. The measured spectral range extends from 16,250 to 16,450 cm−1 for the appropriate intracavity tuning element position. The presented measurements demonstrate sensitive detection of the gas-phase precursor, playing a key role in flame synthesis of iron oxide nanoparticles. The sensitivity of the intracavity technique does not depend on broadband cavity losses and allows conducting measurements in a highly scattering, particle-laden flame environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.Y. Teoh, R. Amal, L. Madler, Nanoscale 2(8), 1324 (2010)

    Article  ADS  Google Scholar 

  2. P. Roth, Proc. Combust. Inst. 31, 1773 (2007)

    Article  Google Scholar 

  3. A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Edit. 46(8), 1222 (2007)

    Article  Google Scholar 

  4. C. Hecht, H. Kronemayer, T. Dreier, H. Wiggers, C. Schulz, Appl. Phys. B Lasers Opt. 94(1), 119 (2009)

    Article  ADS  Google Scholar 

  5. I. Wlokas, A. Faccinetto, B. Tribalet, C. Schulz, A. Kempf, Int. J. Chem. Kinet. 45(8), 487 (2013)

    Article  Google Scholar 

  6. M.D. Rumminger, D. Reinelt, V. Babushok, G.T. Linteris, Combust. Flame 116(1–2), 207 (1999)

    Article  Google Scholar 

  7. R.J. Rollason, J.M.C. Plane, PCCP Phys. Chem. Chem. Phys. 2(10), 2335 (2000)

    Article  Google Scholar 

  8. R.S. Furuya, C.M. Walmsley, K. Nakanishi, P. Schilke, R. Bachiller, Astron. Astrophys. 409(2), L21 (2003)

    Article  ADS  Google Scholar 

  9. C.M. Walmsley, R. Bachiller, G.P. Des Forets, P. Schilke, Astrophys. J. 566(2), L109 (2002)

    Article  ADS  Google Scholar 

  10. B.K. McMillin, P. Biswas, M.R. Zachariah, J. Mater. Res. 11(6), 1552 (1996)

    Article  ADS  Google Scholar 

  11. A.S.C. Cheung, N. Lee, A.M. Lyyra, A.J. Merer, A.W. Taylor, J. Mol. Spectrosc. 95(1), 213 (1982)

    Article  ADS  Google Scholar 

  12. A.S.C. Cheung, A.M. Lyyra, A.J. Merer, A.W. Taylor, J. Mol. Spectrosc. 102(1), 224 (1983)

    Article  ADS  Google Scholar 

  13. M. Barnes, M.M. Fraser, P.G. Hajigeorgiou, A.J. Merer, J. Mol. Spectrosc. 170(2), 449 (1995)

    Article  ADS  Google Scholar 

  14. S.M. Harris, R.F. Barrow, J. Mol. Spectrosc. 84(2), 334 (1980)

    Article  ADS  Google Scholar 

  15. H.S. Son, K. Lee, S.K. Shin, J.K. Ku, Chem. Phys. Lett. 320(5–6), 658 (2000)

    Article  ADS  Google Scholar 

  16. I. Banerjee, N.K. Joshi, S.N. Sahasrabudhe, N.V. Kulkarni, S. Karmakar, R. Pasricha, S. Ghorui, A.K. Tak, S. Murthy, S.V. Bhoraskar, A.K. Das, IEEE Trans. Plasma Sci. 34(4), 1175 (2006)

    Article  ADS  Google Scholar 

  17. M.D. Allen, L.M. Ziurys, J.M. Brown, Chem. Phys. Lett. 257(1–2), 130 (1996)

    Article  ADS  Google Scholar 

  18. J.B. West, H.P. Broida, J. Chem. Phys. 62(7), 2566 (1975)

    Article  ADS  Google Scholar 

  19. J.B. West, H.P. Broida, IEEE J. Quantum Electron. 11(8), 692 (1975)

    Article  ADS  Google Scholar 

  20. G.V. Chertihin, W. Saffel, J.T. Yustein, L. Andrews, M. Neurock, A. Ricca, C.W. Bauschlicher, J. Phys. Chem. 100(13), 5261 (1996)

    Article  Google Scholar 

  21. D.W. Green, G.T. Reedy, J.G. Kay, J. Mol. Spectrosc. 78(2), 257 (1979)

    Article  ADS  Google Scholar 

  22. S. Cheskis, A. Goldman, Prog. Energy Combust. Sci. 35(4), 365 (2009)

    Article  Google Scholar 

  23. A. O'Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59(12), 2544 (1988)

    Article  ADS  Google Scholar 

  24. D. Romanini, K.K. Lehmann, J. Chem. Phys. 99(9), 6287 (1993)

    Article  ADS  Google Scholar 

  25. A. Schocker, K. Kohse-Hoinghaus, A. Brockhinke, Appl. Opt. 44(31), 6660 (2005)

    Article  ADS  Google Scholar 

  26. J.J. Scherer, D.J. Rakestraw, Chem. Phys. Lett. 265(1–2), 169 (1997)

    Article  ADS  Google Scholar 

  27. J. Luque, P.A. Berg, J.B. Jeffries, G.P. Smith, D.R. Crosley, J.J. Scherer, Appl. Phys. B Lasers Opt. 78(1), 93 (2004)

    Article  ADS  Google Scholar 

  28. V.M. Baev, T. Latz, P.E. Toschek, Appl. Phys. B Lasers Opt. 69(3), 171 (1999)

    Article  ADS  Google Scholar 

  29. A. Campargue, F. Stoeckel, M. Chenevier, Spectrochimica Acta Rev. 13(1), 69 (1990)

    Google Scholar 

  30. I. Rahinov, N. Ditzian, A. Goldman, S. Cheskis, Proc. Combust. Inst. 30, 1575 (2005)

    Article  Google Scholar 

  31. A. Goldman, S. Cheskis, Appl. Phys. B Lasers Opt. 92(2), 281 (2008)

    Article  ADS  Google Scholar 

  32. I. Rahinov, A. Goldman, S. Cheskis, Isr. J. Chem. 47(2), 131 (2007)

    Article  Google Scholar 

  33. S.J. Harris, Appl. Opt. 23(9), 1311 (1984)

    Article  ADS  Google Scholar 

  34. A. Fomin, M. Poliak, I. Rahinov, V. Tsionsky, S. Cheskis, Combust. Flame 160(10), 2131 (2013)

    Article  Google Scholar 

  35. A. Hevroni, H. Golan, A. Fialkov, I. Rahinov, V. Tsionsky, G. Markovich, S. Cheskis, Meas. Sci. Technol. 22(11), 115102 (2011)

    Article  ADS  Google Scholar 

  36. I. Rahinov, A. Goldman, S. Cheskis, Appl. Phys. B Lasers Opt. 81(1), 143 (2005)

    Article  ADS  Google Scholar 

  37. K. Kohse-Hoinghaus, D.F. Davidson, A.Y. Chang, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 42(1), 1 (1989)

    Article  ADS  Google Scholar 

  38. I. Derzy, V.A. Lozovsky, S. Cheskis, Chem. Phys. Lett. 313(1–2), 121 (1999)

    Article  ADS  Google Scholar 

  39. B.P. Wilcox, E.T.H. Chrysostom, A. McIlroy, J.W. Daily, I.M. Kennedy, Appl. Phys. B Lasers Opt. 77(5), 535 (2003)

    Article  ADS  Google Scholar 

  40. M.G. Bryukov, A.A. Kachanov, S.I. Panov, O.M. Sarkisov, J. Phys. IV 1(C7), 485 (1991)

    Google Scholar 

  41. I. Rahinov, N. Ditzian, V.A. Lozovsky, S. Cheskis, Chem. Phys. Lett. 352(3–4), 169 (2002)

    Article  ADS  Google Scholar 

  42. I. Rahinov, A. Goldman, S. Cheskis, Combust. Flame 145(1–2), 105 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Israel Science Foundation (Grant No. 1069/08), the grant of the Israeli Ministry of Energy and Water Resources, and the Research Authority of The Open University of Israel (Grant No. 47324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Rahinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahinov, I., Fomin, A., Poliak, M. et al. Absorption electronic spectrum of gaseous FeO: in situ detection with intracavity laser absorption spectroscopy in a nanoparticle-generating flame reactor. Appl. Phys. B 117, 317–323 (2014). https://doi.org/10.1007/s00340-014-5838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5838-6

Keywords

Navigation