Skip to main content
Log in

Biconical-taper-assisted fiber interferometer with modes coupling enhancement for high-sensitive curvature measurement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A modal interferometer based on multimode–singlemode–multimode fiber structure built with a biconical taper for fiber curvature measurement is proposed and experimentally demonstrated. Due to the tapered singlemode fiber acting as a high-efficient mode power converter to enhance the modes coupling, curvature sensor with improved sensitivity is achieved by monitoring the defined fringe visibility of the interference spectrum. The measuring range can be tuned by changing the waist diameter of the fiber taper. Meanwhile, the sensor shows an intrinsic ability to overcome the influence of temperature cross-sensitivity and the power fluctuation of light source. The advantages of easy fabrication, high-quality spectrum with improved sensitivity, and small hysteresis will provide great potential for practical applications of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Segall, Earthquake and Volcano Deformation. Princeton University Press, Princeton, New Jersey (2010)

    MATH  Google Scholar 

  2. T.H.T. Chan, L. Yu, H.Y. Tam, Y.Q. Ni, S.Y. Liu, W.H. Chung, L.K. Cheng, Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation. Eng. Struct. 28, 648–659 (2006)

    Article  Google Scholar 

  3. H.N. Li, D.S. Li, G.B. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 26, 1647–1657 (2004)

    Article  MathSciNet  Google Scholar 

  4. W. Liu, T. Guo, A.C.L. Wong, H.Y. Tam, S. He, Opt. Express 18, 17834–17840 (2010)

    Article  ADS  Google Scholar 

  5. C.C. Ye, S.W. James, R.P. Tatam, Opt. Lett. 25, 1007–1009 (2000)

    Article  ADS  Google Scholar 

  6. O. Frazão, J.M. Baptista, J.L. Santos, P. Roy, Appl. Opt. 47, 2520–2523 (2008)

    Article  ADS  Google Scholar 

  7. A. Martinez, Y. Lai, M. Dubov, I.Y. Khrushchev, I. Bennion, Electron. Lett. 41, 472–474 (2005)

    Article  Google Scholar 

  8. R.M. Silva, M.S. Ferreira, J. Kobelke, K. Schuster, O. Frazão, Opt. Lett. 36, 3939–3941 (2011)

    Article  ADS  Google Scholar 

  9. Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, Z. Song, Opt. Lett. 36, 558–560 (2011)

    Article  ADS  Google Scholar 

  10. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, G. Salceda-Delgado, Opt. Lett. 36, 4380–4382 (2011)

    Article  ADS  Google Scholar 

  11. Y.X. Jin, C.C. Chan, X.Y. Dong, Y.F. Zhang, Opt. Commun. 282, 3905–3907 (2009)

    Article  ADS  Google Scholar 

  12. C. Gouveia, P.A.S. Jorge, J.M. Baptista, O. Frazão, IEEE Photon. Technol. Lett. 23, 804–806 (2011)

    Article  ADS  Google Scholar 

  13. R. Romero, O. Frazão, D.A. Pereira, H.M. Salgado, F.M. Araújo, L.A. Ferreira, Appl. Opt. 44, 3821–3826 (2005)

    Article  ADS  Google Scholar 

  14. A. Muhamad Hatta, Y. Semenova, Q. Wu, G. Farrell, Appl. Opt. 49, 536–541 (2010)

    Article  ADS  Google Scholar 

  15. L.V. Nguyen, D. Hwang, S. Moon, D.S. Moon, Y. Chung, Opt. Express 16, 11369–11375 (2008)

    Article  ADS  Google Scholar 

  16. S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, W. Tong, Opt. Lett. 37, 1610–1612 (2012)

    Article  ADS  Google Scholar 

  17. S. Zhang, W. Zhang, S. Gao, P. Geng, X. Xue, Opt. Lett. 37, 4480–4482 (2012)

    Article  ADS  Google Scholar 

  18. O. Frazão, J. Viegas, P. Caldas, J.L. Santos, F.M. Araújo, L.A. Ferreira, F. Farahi, Opt. Lett. 32, 3074–3076 (2007)

    Article  ADS  Google Scholar 

  19. A.W. Snyder, IEEE Trans. Microwave Theory Tech. 18, 383–392 (1970)

    Article  ADS  Google Scholar 

  20. P.M. Shankar, L.C. Bobb, D. Howard, J. Krumboltz, Lightwave Technol. 9, 832–837 (1991)

    Article  ADS  Google Scholar 

  21. L.C. Bobb, P.M. Shankar, D. Howard, J. Krumboltz, Lightwave Technol. 8, 1084–1090 (1990)

    Article  ADS  Google Scholar 

  22. D. Gloge, Appl. Opt. 11, 2506–2513 (1972)

    Article  ADS  Google Scholar 

  23. K.S. Kaufman, R. Terras, R.F. Mathis, J. Opt. Soc. Am. 71, 1513–1518 (1981)

    Article  ADS  Google Scholar 

  24. L. Yao, T.A. Birks, J.C. Knight, Opt. Express 17, 2962–2967 (2009)

    Article  ADS  Google Scholar 

  25. H.F. Taylor, J. Lightwave Technol. 2, 617–628 (1984)

    Article  ADS  Google Scholar 

  26. L. Ping, L. Men, K. Sooley, Q. Chen, Appl. Phys. Lett. 97, 131110 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by State Key Program of National Natural Science Foundation of China (No. 60937002), sub-Project of the Major Program of the National Natural Science Foundation of China (No. 61290315), the National Natural Science Foundation of China (No. 61275004), the sub-Project of National High Technology Research and Development Program of China (863 Program) (No. 2012AA041203), and the Special Foundation for Sensor Research of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wo, J., Sun, Q., Li, X. et al. Biconical-taper-assisted fiber interferometer with modes coupling enhancement for high-sensitive curvature measurement. Appl. Phys. B 115, 1–8 (2014). https://doi.org/10.1007/s00340-013-5565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5565-4

Keywords

Navigation