Skip to main content
Log in

Optimum spectral window for imaging of art with optical coherence tomography

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS–NIR (400–2,400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use OCT for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 μm are highly desirable for OCT applications in art and potentially material science in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Berlin, 2008)

  2. M. Wojtkowski, Appl. Opt. 49(16), D30 (2010)

    Article  Google Scholar 

  3. D. Stifter, Appl. Phys. B 88, 337 (2007)

    Article  Google Scholar 

  4. P. Targowski, B. Rouba, M. Wojtkowski, A. Kowalczyk, Stud. Conserv. 49, 107 (2004)

    Google Scholar 

  5. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, D. Saunders, Opt. Express 13, 6133 (2005)

    Article  ADS  Google Scholar 

  6. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, A. Tortora, Opt. Spectrosc. 101, 23 (2006)

    Article  ADS  Google Scholar 

  7. D.C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J.Y. Jiang, S. Barry, Opt. Express 15, 15972 (2007)

    Article  ADS  Google Scholar 

  8. M. Spring, H. Liang, B. Peric, D. Saunders, A. Podoleanu, in International Council of Museums (ICOM) Committee for Conservation Triennial Conference, Preprints Vol. II (Allied Publishers, New Delhi, 2008), p. 916

  9. S. Lawman, H. Liang, Appl. Opt. 50(32), 6039 (2011)

    Article  ADS  Google Scholar 

  10. H. Liang, B. Peric, M. Hughes, A.G. Podoleanu, M. Spring, S. Roehrs, Proc. SPIE 7139, 713915 (2008)

    Article  Google Scholar 

  11. P. Targowski, M. Iwanicka, Appl. Phys. A 106(2), 265 (2011)

    Article  ADS  Google Scholar 

  12. Y. Wang, J.S. Nelson, Z. Chen, B.J. Reiser, R.S. Chuck, R. Windeler, Opt. Express 11, 1411–1427 (2003)

    Article  ADS  Google Scholar 

  13. A. Sainter, T. King, M. Dickinson, J. Biomed. Opt. 9, 193 (2004)

    Article  ADS  Google Scholar 

  14. J.R.J. van Asperen de Boer, Appl. Opt. 7, 1711 (1968)

  15. J.R.J. van Asperen de Boer, Stud. Conserv. 14, 96 (1969)

  16. E. Walmsley, C. Fletcher, J. Delaney, Stud. Conserv. 37, 120 (1992)

    Article  Google Scholar 

  17. M. Gargano, N. Ludwig, G. Poldi, Infrared Phys. Technol. 49, 249–253 (2007)

    Article  ADS  Google Scholar 

  18. A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, P. Targowski, in Lasers in the Conservation of Artworks, LACONA VI Proceedings, (Springer, Berlin, 2007), p. 487

  19. L. Carrion, M. Lestrade, Z. Xu, G. Touma, R. Maciejko, M. Bertrand, J. Biomed. Opt. 12, 014017 (2007)

    Article  ADS  Google Scholar 

  20. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, W. Drexler, J. Biomed. Opt. 15, 026025 (2010)

    Article  ADS  Google Scholar 

  21. V.M. Kodach, J. Kalkman, D.J. Faber, T.G. Van Leeuwen, Biomed. Opt. Express 1, 176 (2010)

    Article  Google Scholar 

  22. J.M. Schmitt, A. Knuttel, M. Yadlowsky, M.A. Eckhaus, Phys. Med. Biol. 39, 1705 (1994)

    Article  Google Scholar 

  23. Y. Pan, D.L. Farkas, J. Biomed. Opt. 3(4), 446 (1998)

    Article  ADS  Google Scholar 

  24. T.B. Brill, Light: Its Interaction with Art and Antiquities (Plenum Press, New York, 1980)

    Google Scholar 

  25. D. Saunders, R. Billinge, J. Cupitt, N. Atkinson, H. Liang, Stud. Conserv. 51(4), 277 (2006)

    Google Scholar 

  26. H. Liang, Appl. Phys. A 106(2), 309 (2012)

    Article  ADS  Google Scholar 

  27. M. Bacci, S. Baronti, A. Casini, F. Lotti, M. Picollo, O. Casazza, Mater. Res. Soc. Symp. Proc. 267, 265 (1992)

    Article  Google Scholar 

  28. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  29. W.E. Vargas, G. Niklasson, Appl. Opt. 36(22), 5580 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding by the Royal Society, the Leverhulme Trust, EPSRC CASE award, AHRC/EPSRC Science and Heritage Programme and Nottingham Trent University is gratefully acknowledged. We would like to acknowledge Sophie Martin-Simpson of Nottingham Trent University and Rachel Morrison of the National Gallery for preparing some of the historic artists’ paint samples, Gareth Cave of Nottingham Trent University for the XRD confirmation of realgar and orpiment, Rachel Billinge of the National Gallery for allowing us to use the detail of the infrared reflectogram made with the SIRIS and OSIRIS cameras in Fig. 10b and Fig. 11b, and Sammy Cheung of Nottingham Trent University for taking the images in Fig. 2a, b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haida Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Lange, R., Peric, B. et al. Optimum spectral window for imaging of art with optical coherence tomography. Appl. Phys. B 111, 589–602 (2013). https://doi.org/10.1007/s00340-013-5378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5378-5

Keywords

Navigation