Skip to main content
Log in

A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have demonstrated a new apparatus for operating microfabricated ion-trap arrays in a compact ultra-high-vacuum setup with excellent optical and electrical access. The approach uses conventional components, materials and techniques in a unique fashion. The microtrap chip is mounted on a modified ceramic leadless chip carrier, the conductors of which serve as the vacuum feedthrough. The chip carrier is indium-sealed to stainless-steel components to form vacuum seals, resulting in short electrical path lengths of ≤20 mm from the trap electrodes under vacuum to air side. The feedthrough contains conductors for the radio-frequency trap drive, as well as 42 conductors for DC electrodes. Vacuum pressures of ∼1 × 10−11 mbar are achieved, and ions have been confined and laser cooled in a microtrap chip. The apparatus enables accurate measurements of radio-frequency voltage amplitudes on the trap electrodes, yielding an excellent agreement between measured and modelled trap efficiencies. This feature is of significant use in establishing initial operation of new devices. The principle of the connectivity scheme presented here is applicable to larger ceramic chip carriers containing many more conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Monroe, Nature. 416, 238 (2002)

    Article  ADS  Google Scholar 

  2. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature. 464, 45 (2010)

    Article  ADS  Google Scholar 

  3. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Nature. 429, 737 (2004)

    Article  ADS  Google Scholar 

  4. S.A. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)

    Article  ADS  Google Scholar 

  5. R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.H. Wesenberg, M.J. Biercuk, D. Leibfried, D.J. Wineland, Phys. Rev. A 84, 032314 (2011)

    Article  ADS  Google Scholar 

  6. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  7. J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K.R. Brown, I.L. Chuang, Phys. Rev. Lett. 100, 013001 (2008)

    Article  ADS  Google Scholar 

  8. D.L. Moehring, C. Highstrete, D. Stick, K.M. Fortier, R. Haltli, C. Tigges, M.G. Blain, New J. Phys. 13, 075018 (2011)

    Article  ADS  Google Scholar 

  9. R. Blatt, D. Wineland, Nature. 453, 1008 (2008)

    Article  ADS  Google Scholar 

  10. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science. 325, 1227 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. Hanneke, J.P. Home, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Nat. Phys. 6, 13 (2010)

    Article  Google Scholar 

  12. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  13. D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Nature. 449, 68 (2007)

    Article  ADS  Google Scholar 

  14. C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature. 443, 316 (2006)

  15. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science. 319, 1808 (2008)

    Article  ADS  Google Scholar 

  16. D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006)

    Article  Google Scholar 

  17. J. Britton, D. Leibfried, J.A. Beall, R.B. Blakestad, J.H. Wesenberg, D.J. Wineland, Appl. Phys. Lett. 95, 173102 (2009)

    Article  ADS  Google Scholar 

  18. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

    Article  Google Scholar 

  19. D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, J.M. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010)

    Article  ADS  Google Scholar 

  20. W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, J. Rabchuk, Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  21. J.J. McLoughlin, A.H. Nizamani, J.D. Siverns, R.C. Sterling, M.D. Hughes, B. Lekitsch, B. Stein, S. Weidt, W.K. Hensinger, Phys. Rev. A 83, 013406 (2011)

    Article  ADS  Google Scholar 

  22. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  23. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, S. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  24. A. Walther, F. Ziesel, T. Ruster, S.T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, U. Poschinger, Phys. Rev. Lett. 109, 080501 (2012)

    Article  ADS  Google Scholar 

  25. R. Bowler, J. Gaebler, Y. Lin, T.R. Tan, D. Hanneke, J.D. Jost, J.P. Home, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 109, 080502 (2012)

    Article  ADS  Google Scholar 

  26. D. Kaufmann, T. Collath, M. Baig, P. Kaufmann, E. Asenwar, M. Johanning, C. Wunderlich, Appl. Phys. B. 107, 935–943 (2012)

    Article  ADS  Google Scholar 

  27. M. Brownnutt, G. Wilpers, P. Gill, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232 (2006)

    Article  ADS  Google Scholar 

  28. G. Wilpers, P. See, P. Gill, A.G. Sinclair, Nat. Nanotech. 7, 572–576 (2012)

    Article  ADS  Google Scholar 

  29. M. Brownnutt, V. Letchumanan, G. Wilpers, R.C. Thompson, P. Gill, A.G. Sinclair, Appl. Phys. B. 87, 411 (2007)

    Article  ADS  Google Scholar 

  30. M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, New J. Phys. 12, 093035 (2010)

    Article  ADS  Google Scholar 

  31. V. Letchumanan, P. Gill, E. Riis, A.G. Sinclair, Phys. Rev. A. 70, 033419 (2004)

    Article  ADS  Google Scholar 

  32. W.W. Macalpine, R.O. Schildknecht, in Proceedings of the IRE, 2099 (1959)

  33. V. Letchumanan, M.A. Wilson, P. Gill, A.G. Sinclair, Phys. Rev. A. 72, 012509 (2005)

    Article  ADS  Google Scholar 

  34. M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Monroe, Appl. Phys. B 78, 639 (2004)

    Article  ADS  Google Scholar 

  35. J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  36. L.D. Landau, E.M. Lifshitz, Course of theoretical physics - volume 3, quantum mechanics (non-relativistic theory) (Pergamon Press Ltd, Oxford, 1977)

    Google Scholar 

  37. J.B. Hasted, Physics of atomic collisions (Butterworth & Co. (Publishers) Ltd, London, 1964)

    Google Scholar 

  38. H.-J. Werner, W. Meyer, Phys. Rev. A 13, 13–16 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dirk Kähler (Fraunhofer ISIT) for help with the electronic packaging. We thank Mark Oxborrow (NPL), Tanja Mehlstäubler (PTB) and Daniel Stick (Sandia National Labs) for helpful discussions. This work was supported by NPL’s strategic research programme, the UK NMO Pathfinder programme, and by EU contracts IST 2005-15714-SCALA, and IST 2006-517675-MICROTRAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Wilpers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilpers, G., See, P., Gill, P. et al. A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access. Appl. Phys. B 111, 21–28 (2013). https://doi.org/10.1007/s00340-012-5302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5302-4

Keywords

Navigation