Skip to main content
Log in

Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Plane EM waves transmitted through nano-corrugated metallic thin films produce evanescent waves which include the information on the nano-structures. The production of the evanescent waves at the metallic surface is analyzed. A microsphere located above the metallic surface collects the evanescent waves which are converted into propagating waves. The equations for the refraction at the boundary of the microsphere and the use of Snell’s law for evanescent waves are developed. The magnification of the nano-structure images is explained by a geometric optics description, but the high resolution is related to the evanescent waves properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Lipson, S.G. Lipson, H. Lipson, Optical Physics (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  2. Y. Ben-Aryeh, Appl. Phys. B 84, 121 (2006)

    Article  ADS  Google Scholar 

  3. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Kahn, Z. Liu, Z. Chen, M. Hong, Nat. Commun. 2, 218 (2011)

  4. Z. Wang, L. Li, White light microscopy could exceed 50 nm resolution, 1 Jul 2011—Laser focus world, microscopy

  5. X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, Appl. Phys. Lett. 99, 203102 (2011)

    Article  ADS  Google Scholar 

  6. Y. Ben-Aryeh, J. Opt. B Quantum Semiclass Opt. 5, S553 (2003)

    Article  ADS  Google Scholar 

  7. Y. Ben-Aryeh, Appl. Phys. B 91, 157 (2008)

    Article  ADS  Google Scholar 

  8. Y. Ben-Aryeh, Phys. Lett. A 328, 306 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Y. Ben-Aryeh, Int. J. Quantum Inf. 3, 111 (2005)

    Article  Google Scholar 

  10. M.V. Klein, Optics (Wiley, New York, 1986)

    Google Scholar 

  11. Z.B. Wang, N. Joseph, L. Li, B.S. Luk’yanchuk, J. Mech. Eng. Sci. 224, 1113 (2010)

    Google Scholar 

  12. Z.B. Wang, W. Guo, A. Pena, D.J. Whitehead, B.S. Luk’yanchuk, L. Li, Z. Liu, Y. Zhu, M.H. Hong, Opt. Express 16, 19706 (2008)

    Article  ADS  Google Scholar 

  13. S.A. Maier, Plasmonics: Fundamemtals and Applications (Springer, New York, 2007)

    Google Scholar 

  14. A. Degiron, T.W. Ebbesen, J. Opt. A Pure Appl. Opt. 7, S90 (2005)

    Article  ADS  Google Scholar 

  15. S. Huang, Z. Wang, Z. Sun, Z. Wang, B. Luk’yanchuk, J. Nanosci. Nanotechnol. 11, 10981 (2011)

    Article  Google Scholar 

  16. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  17. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  18. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996)

    Google Scholar 

  19. S.V. Kukhlevsky, Europhys. Lett. 54, 461 (2001)

    Article  ADS  Google Scholar 

  20. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ben-Aryeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Aryeh, Y. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films. Appl. Phys. B 109, 165–170 (2012). https://doi.org/10.1007/s00340-012-5193-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5193-4

Keywords

Navigation