Skip to main content
Log in

Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 m standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 μm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Bauer, A.K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Muller, G. Holl, Appl. Phys. B Lasers O 92, 327 (2008)

    Article  ADS  Google Scholar 

  2. T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman, T.J. Johnson, Anal. Bioanal. Chem. 395, 337 (2009)

    Article  Google Scholar 

  3. J.-M. Theriault, E. Puckrin, J. Hancock, P. Lecavalier, C.J. Lepage, J.O. Jensen, Appl. Opt. 43, 5870 (2004)

    Article  ADS  Google Scholar 

  4. A. Wittman, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, E. Gini, Appl. Phys. Lett. 89, 141116 (2006)

    Article  ADS  Google Scholar 

  5. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, F. Capasso, Appl. Phys. Lett. 88, 201115 (2006)

    Article  ADS  Google Scholar 

  6. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)

    Article  ADS  Google Scholar 

  7. G. Totschnig, F. Winter, V. Pustogov, J. Faist, A. Muller, Opt. Lett. 27, 1788 (2002)

    Article  ADS  Google Scholar 

  8. J. Hildenbrand, J. Herbst, J. Wollenstein, A. Lambrecht, Proc. SPIE 7222, 72220B (2009)

    Article  ADS  Google Scholar 

  9. A. Mukherjee, S. Von der Porten, C.K.N. Patel, Appl. Opt. 49, 2072 (2010)

    Article  Google Scholar 

  10. L.A. Skvortsov, E.M. Maksimov, Quantum Electron. 40, 565 (2010)

    Article  ADS  Google Scholar 

  11. C.W. Van Neste, L.R. Senesac, T. Thundat, Anal. Chem. 81, 1952 (2009)

    Article  Google Scholar 

  12. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Losch, Q. Yang, Opt. Eng. 49, 111127 (2010)

    Article  ADS  Google Scholar 

  13. B.E. Bernacki, M.C. Phillips, Proc. SPIE 7665, 76650I (2010)

    Article  ADS  Google Scholar 

  14. M.E. Morales-Rodriguez, L.R. Senesac, T. Thundat, M.K. Rafailov, P.G. Datskos, Proc. SPIE 8031, 80312D (2011)

    Article  ADS  Google Scholar 

  15. R. Furstenberg, C.A. Kendziora, J. Stepnowski, S.V. Stepnowski, M. Rake, M.R. Papantonakis, V. Nguyen, G.K. Hubler, R.A. McGill, Appl. Phys. Lett. 93, 224103 (2008)

    Article  ADS  Google Scholar 

  16. M.R. Papantonakis, C.A. Kendziora, R. Furstenberg, J. Stepnowski, M. Rake, S.V. Stepnowski, R.A. McGill, Proc. SPIE 7304, 730418 (2009)

    Article  Google Scholar 

  17. J.W. Salisbury, in Remote Geochemical Analysis, ed by C.M. Pieters, A.J. Englert (Cambridge University Press, New York, 1993), pp. 79–98

  18. J.M. Bennet, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, DC, 1999), p. 130

  19. F. Fuchs, C. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Kohler, J. Wagner, Proc. SPIE 6739, 673904 (2007)

    Article  Google Scholar 

  20. B. Hinkov, F. Fuchs, J.M. Kaster, Q. Yang, W. Bronner, R. Aidam, K. Kohler, Proc. SPIE 7484, 748406 (2009)

    Article  Google Scholar 

  21. F. Fuchs, B. Hinkov, S. Hugger, J.M. Kaster, R. Aidam, W. Bronner, K. Kohler, Q. Yang, S. Rademacher, K. Degreif, F. Schnurer, W. Schweikert, Proc. SPIE 7608, 760809 (2010)

    Article  Google Scholar 

  22. F.E. Nicodemus, Appl. Opt. 9, 1474 (1970)

    Article  ADS  Google Scholar 

  23. R.D. Jacobson, S.R. Wilson, G.A. Al-Jumaily, J.R. McNeil, J.M. Bennett, L. Mattsson, Appl. Opt. 31, 1426 (1992)

    Article  ADS  Google Scholar 

  24. M.C. Phillips, N. Ho, Opt. Express 16, 1836 (2008)

    Article  ADS  Google Scholar 

  25. M.C. Phillips, M.S. Taubman, B.E. Bernacki, B.D. Cannon, J.T. Schiffern, T.L. Myers, Proc. SPIE 7608, 76080D (2010)

    Article  ADS  Google Scholar 

  26. M.C. Phillips, T.L. Myers, M.D. Wojcik, B.D. Cannon, Opt. Lett. 32, 1177 (2007)

    Article  ADS  Google Scholar 

  27. M.S. Taubman, Rev. Sci. Instrum. 82, 064704 (2011)

    Article  ADS  Google Scholar 

  28. B. Philips-Invernizzi, D. Dupont, Opt. Eng. 40, 1082 (2001)

    Article  ADS  Google Scholar 

  29. M.C. Phillips, J.D. Suter, B.E. Bernacki, T.J. Johnson, Proc. SPIE 8358, 83580T (2012)

    Article  ADS  Google Scholar 

  30. J.D. Jackson, Classical electrodynamics (Wiley, Hoboken, 2009)

    Google Scholar 

  31. S.K. Andersson, G.A. Niklasson, J. Phys. Condens. Mat. 7, 7173 (1995)

    Article  ADS  Google Scholar 

  32. E.H. Korte, A. Roseler, Anal. Bioanal. Chem. 382, 1987 (2005)

    Article  Google Scholar 

  33. R.A. Isbell, M.Q. Brewster, Propellants Explos. Pyrotech. 23, 218 (1998)

    Article  Google Scholar 

  34. R.A. Isbell, M.Q. Brewster, J. Thermophys. Heat Transf. 11, 65 (1997)

    Article  Google Scholar 

  35. R.A. Isbell, M.Q. Brewster, Mater. Res. Soc. Symp. Proc. 418, 85 (1996)

    Article  Google Scholar 

  36. P. Torres, L. Mercado, I. Cotte, S.P. Hernandez, N. Mina, A. Santana, R.T. Chamberlain, R. Lareau, M.E. Castro, J. Phys. Chem. B 108, 8799 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tom Blake and Tim Johnson for providing the samples and the reference FTIR spectra. We thank Daylight Solutions for supplying the quantum cascade laser devices. The research described in this paper was conducted under the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory, which is operated for the US Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suter, J.D., Bernacki, B. & Phillips, M.C. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers. Appl. Phys. B 108, 965–974 (2012). https://doi.org/10.1007/s00340-012-5134-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5134-2

Keywords

Navigation