Skip to main content
Log in

High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this manuscript, we demonstrate high-speed (10-kHz-acquisition rate) planar laser-induced fluorescence (PLIF) imaging of formaldehyde (CH2O) in turbulent non-premixed flames. Using the unique pulse-burst laser system (PBLS) at Ohio State University, high-energy laser pulses (∼100 mJ/pulse) at 355 nm with 100 μs pulse separation are generated and used to measure the time-varying CH2O distributions in attached and lifted methane-based turbulent flames. By taking advantage of the tunable, narrow spectral linewidth of the PBLS at 355 nm, the laser output can be frequency-tuned and adjusted to overlap with absorption “peaks” within the tail of the A–X transition of CH2O near 355 nm, thus increasing the acquired signal by as much as a factor of three. The reported signal-to-noise ratio (SNR) exceeds 55, which represents one of the highest SNR reported to date for kilohertz-rate imaging of scalars for comparable spatial resolution. Potential applications and pairings with other diagnostic approaches for high-speed reaction rate and multi-scalar imaging also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon and Breach, New York, 1996)

    Google Scholar 

  2. K. Kohse-Hoinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, London, 2002)

    Google Scholar 

  3. P.H. Paul, H.N. Najm, Proc. Combust. Inst. 27, 43 (1998)

    Google Scholar 

  4. S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, J. Wolfrum, Proc. Combust. Inst. 28, 279 (2000)

    Article  Google Scholar 

  5. B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006)

    Article  Google Scholar 

  6. A. Fayoux, K. Zähringer, O. Gicquel, J.C. Rolon, Proc. Combust. Inst. 30, 251 (2005)

    Article  Google Scholar 

  7. M.J. Dunn, A.R. Masri, R.W. Bilger, R.S. Barlow, Flow Turbul. Combust. 85, 621 (2010)

    Article  MATH  Google Scholar 

  8. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Flame 155, 181 (2008)

    Article  Google Scholar 

  9. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Theory Model. 13, 645 (2009)

    Article  ADS  Google Scholar 

  10. A. Joedicke, N. Peters, M. Mansour, Proc. Combust. Inst. 30, 901 (2005)

    Article  Google Scholar 

  11. B. Bohm, C. Heeger, R.L. Gordon, A. Dreizler, Flow Turbul. Combust. 86, 313 (2011)

    Article  Google Scholar 

  12. W. Paa, W. Triebel, in SPIE Proceedings, Solid State Lasers and Amplifiers, ed. by A. Sennaroglu, J.G. Fujimoto, C.R. Pollack, September 2004

  13. W. Paa, D. Mueller, A. Gawlik, W. Triebel, in SPIE Proceedings, Optical Diagnostics, ed. by L.M. Hanssen, P.V. Farrell, August 2005

  14. A. Burkert, W. Paa, G. Schmidl, W. Triebel, Ch. Eigenbrod, Acta Astronaut. 55, 199 (2004)

    Article  ADS  Google Scholar 

  15. J. Olofsson, M. Richter, M. Alden, M. Auge, Rev. Sci. Instrum. 77, 013104 (2006)

    Article  ADS  Google Scholar 

  16. B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005)

    Article  ADS  Google Scholar 

  17. J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009)

    Article  ADS  Google Scholar 

  18. N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009)

    Article  ADS  Google Scholar 

  19. K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010)

    Article  ADS  Google Scholar 

  20. N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011)

    Article  Google Scholar 

  21. R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B (2011). doi:10.1007/s00340-011-4658-1

    Google Scholar 

  22. N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011)

    Article  ADS  Google Scholar 

  23. B. Thurow, N. Jiang, W. Lempert, M. Samimy, AIAA J. 43, 500 (2005)

    Article  ADS  Google Scholar 

  24. N. Jiang, M. Nishihara, W.R. Lempert, Appl. Phys. Lett. 97, 221103 (2010)

    Article  ADS  Google Scholar 

  25. P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000)

    Article  ADS  Google Scholar 

  26. J.E. Harrington, K.C. Smyth, Chem. Phys. Lett. 202, 196 (1993)

    Article  ADS  Google Scholar 

  27. S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, Appl. Phys. B 70, 733 (2000)

    Article  ADS  Google Scholar 

  28. A. Burkert, D. Grebner, D. Müller, W. Triebel, J. König, Proc. Combust. Inst. 28, 1655 (2000)

    Article  Google Scholar 

  29. R. Schießl, P. Pixner, A. Dreizler, U. Mass, Combust. Sci. Technol. 149, 339 (1999)

    Article  Google Scholar 

  30. D.I. Shin, T. Dreier, J. Wolfrum, Appl. Phys. B 72, 257 (2001)

    Article  ADS  Google Scholar 

  31. R. Bombach, B. Käppelli, Appl. Phys. B 68, 251 (1999)

    Article  ADS  Google Scholar 

  32. R.J.H. Klein-Douwel, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Appl. Opt. 39, 3712 (2000)

    Article  ADS  Google Scholar 

  33. J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Appl. Phys. B 73, 731 (2001)

    Article  ADS  Google Scholar 

  34. C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, M. Alden, Spectrochim. Acta Part A 59, 3347 (2003)

    Article  ADS  Google Scholar 

  35. N. Jiang, W.R. Lempert, G.L. Switzer, T.R. Meyer, J.R. Gord, Appl. Opt. 47, 64 (2008)

    Article  ADS  Google Scholar 

  36. C. Brackmann, Z. Li, M. Rupinski, N. Docquier, G. Pengloan, M. Alden, Appl. Spectrosc. 59, 763 (2005)

    Article  ADS  Google Scholar 

  37. V. Weber, J. Brubach, R.L. Gordon, A. Dreizler, Appl. Phys. B 103, 421 (2011)

    Article  ADS  Google Scholar 

  38. V. Santoro, A. Linan, A. Gomez, Proc. Combust. Inst. 28, 2039 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to the Air Force Office of Scientific Research (Julian Tishkoff/Chiping Li—Technical Monitors) and to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. The authors acknowledge previous financial support from NASA (Paul Danehy—Technical Monitor), the U.S. Air Force Research Laboratory—Propulsion Directorate (James Gord—Technical Monitor), the Air Force Office of Scientific Research (J. Schmisseur—Technical Monitor), and the National Science Foundation Major Research Instrumentation program for the development of the pulse-burst laser system. KNG acknowledges support from the Department of Energy (DOE) Office of Science Graduate Fellowship Program administered by the Oak Ridge Institute for Science and Education for the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Sutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabet, K.N., Patton, R.A., Jiang, N. et al. High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system. Appl. Phys. B 106, 569–575 (2012). https://doi.org/10.1007/s00340-012-4881-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4881-4

Keywords

Navigation