Skip to main content
Log in

One- and two-pulse quadrupolar excitation schemes of the ion motion in a Penning trap investigated with FT-ICR detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In a Penning ion trap the interconversion between the radial motional modes of stored particles can be accomplished by applying one- and two-pulse (Ramsey) azimuthal quadrupolar radio frequency fields. In this work the interaction of ions with the excitation fields has been probed by Fourier transform ion cyclotron resonance (FT-ICR) detection. A theoretical description of this interaction is derived by use of a quasi-classical coherent state and the interconversion of modes is interpreted in a quantum-mechanical context. The dipolar-detection FT-ICR signal at the modified cyclotron frequency has been studied as a function of the interaction parameters such as excitation frequency, amplitude and duration and is compared with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.G. Marshall, C.L. Hendrickson, G.S. Jackson, Mass Spectrom. Rev. 17, 1 (1998)

    Article  Google Scholar 

  2. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  3. K. Blaum, Yu.N. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  4. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  5. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  6. G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009)

    Article  ADS  Google Scholar 

  7. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  8. M.B. Comisarow, A.G. Marshall, Chem. Phys. Lett. 25, 282 (1974)

    Article  ADS  Google Scholar 

  9. M.B. Comisarow, Hyperfine Interact. 81, 171 (1993)

    Article  ADS  Google Scholar 

  10. N.D. Scielzo, S. Caldwell, G. Savard, J.A. Clark, C.M. Deibel, J. Fallis, S. Gulick, D. Lascar, A.F. Levand, G. Li, J. Mintz, E.B. Norman, K.S. Sharma, M. Sternberg, T. Sun, J. Van Schelt, Phys. Rev. C 80, 025501 (2009)

    Article  ADS  Google Scholar 

  11. M. Mukherjee, D. Beck, K. Blaum, G. Bollen, J. Dilling, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, S. Schwarz, L. Schweikhard, C. Yazidjian, Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  12. A. Jokinen, T. Eronen, U. Hager, I. Moore, H. Penttilä, S. Rinta-Antila, J. Äystö, Int. J. Mass Spectrom. 251, 204 (2006)

    Article  ADS  Google Scholar 

  13. G. Bollen, S. Schwarz, D. Davies, P. Lofy, D. Morrissey, R. Ringle, P. Schury, T. Sun, L. Weissman, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 532, 203 (2003)

    Article  ADS  Google Scholar 

  14. M. Block, D. Ackermann, K. Blaum, A. Chaudhuri, Z. Di, S. Eliseev, R. Ferrer, D. Habs, F. Herfurth, F.P. Heßberger, S. Hofmann, H.-J. Kluge, G. Maero, A. Martin, G. Marx, M. Mazzocco, M. Mukherjee, J.B. Neumayr, W.R. Plaß, W. Quint, S. Rahaman, C. Rauth, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P.G. Thirolf, G. Vorobjev, C. Weber, Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  15. S. Eliseev, C. Roux, K. Blaum, M. Block, C. Droese, F. Herfurth, H.-J. Kluge, M.I. Krivoruchenko, Yu.N. Novikov, E. Minaya Ramirez, L. Schweikhard, V.M. Shabaev, F. Simkovic, I.I. Tupitsyn, K. Zuber, N.A. Zubova, Phys. Rev. Lett. 106, 052504 (2011)

    Article  ADS  Google Scholar 

  16. M. Suhonen, I. Bergström, T. Fritioff, Sz. Nagy, A. Solders, R. Schuch, J. Instrum. 2, P06003 (2007)

    Article  Google Scholar 

  17. J. Dilling, R. Baartman, P. Bricault, M. Brodeur, L. Blomeley, F. Buchinger, J. Crawford, J.R. Crespo López-Urrutia, P. Delheij, M. Froese, G.P. Gwinner, Z. Ke, J.K.P. Lee, R.B. Moore, V. Ryjkov, G. Sikler, M. Smith, J. Ullrich, J. Vaz, Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  18. J. Ketelaer, J. Krämer, D. Beck, K. Blaum, M. Block, K. Eberhardt, G. Eitel, R. Ferrer, C. Geppert, S. George, F. Herfurth, J. Ketter, Sz. Nagy, D. Neidherr, R. Neugart, W. Nörtershäuser, J. Repp, C. Smorra, N. Trautmann, C. Weber, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 594, 162 (2008)

    Article  ADS  Google Scholar 

  19. J. Ketelaer, T. Beyer, K. Blaum, M. Block, K. Eberhardt, M. Eibach, F. Herfurth, C. Smorra, Sz. Nagy, Eur. Phys. J. D 58, 47 (2010)

    Article  ADS  Google Scholar 

  20. N.F. Ramsey, Phys. Rev. 76, 996 (1949)

    Article  ADS  Google Scholar 

  21. N.F. Ramsey, Phys. Rev. 78, 695 (1950)

    Article  ADS  Google Scholar 

  22. S. George, S. Baruah, B. Blank, K. Blaum, M. Breitenfeldt, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, M. Kretzschmar, D. Lunney, R. Savreux, S. Schwarz, L. Schweikhard, C. Yazidjian, Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  23. S. George, K. Blaum, F. Herfurth, A. Herlert, M. Kretzschmar, S. Nagy, S. Schwarz, L. Schweikhard, C. Yazidjian, Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  24. G. Bollen, H.-J. Kluge, T. Otto, G. Savard, H. Stolzenberg, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 70, 490 (1992)

    Article  ADS  Google Scholar 

  25. M. Eibach, T. Beyer, K. Blaum, M. Block, K. Eberhardt, F. Herfurth, J. Ketelaer, Sz. Nagy, D. Neidherr, W. Nörtershäuser, C. Smorra, Int. J. Mass Spectrom. 303, 27 (2011)

    Article  Google Scholar 

  26. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  27. P.B. Grosshans, P.J. Shields, A.G. Marshall, J. Chem. Phys. 94, 5341 (1991)

    Article  ADS  Google Scholar 

  28. M. Kretzschmar, J. Appl. Phys. B (this issue)

  29. E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71, 086201 (2008)

    Article  ADS  Google Scholar 

  30. M. Ubieto-Diaz, D. Rodríguez, S. Lukic, Sz. Nagy, S. Stahl, K. Blaum, Int. J. Mass Spectrom. 288, 1 (2009)

    Article  ADS  Google Scholar 

  31. M. Heck, K. Blaum, R.B. Cakirli, D. Rodríguez, L. Schweikhard, S. Stahl, M. Ubieto-Díaz, Hyperfine Interact. 199, 347 (2011)

    Article  ADS  Google Scholar 

  32. G. Bollen, R.B. Moore, G. Savard, H. Stolzenberg, J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  33. J.P. Lee, M.B. Comisarow, J. Magn. Reson. 72, 139 (1987)

    Article  Google Scholar 

  34. L. Schweikhard, A.G. Marshall, J. Am. Soc. Mass Spectrom. 4, 433 (1993)

    Article  Google Scholar 

  35. M.B. Comisarow, J. Chem. Phys. 69, 4097 (1978)

    Article  ADS  Google Scholar 

  36. K. Levenberg, Q. Appl. Math. 2, 164 (1944)

    MathSciNet  MATH  Google Scholar 

  37. D.W. Mitchell, J. Am. Soc. Mass Spectrom. 10, 136 (1999)

    Article  Google Scholar 

  38. E.N. Nikolaev, R.M.A. Heeren, A.M. Popov, A.V. Pozdneev, K.S. Chingin, Rapid Commun. Mass Spectrom. 21, 3527 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

D. Rodríguez acknowledges support from the Spanish Ministry of Science and Innovation through the Ramón y Cajal program, as well as from the Max-Planck Society for the recent stays at the MPIK. R.B. Cakirli acknowledges support by the Alexander von Humboldt Foundation and M. Ubieto-Díaz by the IMPRS for Precision Tests of Fundamental Symmetries. We gratefully acknowledge financial support by the Max-Planck Society, by the German Funding Agency DFG under contract BL 981/2-1, and by the BMBF under the project code 06GF9101I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heck, M., Blaum, K., Cakirli, R.B. et al. One- and two-pulse quadrupolar excitation schemes of the ion motion in a Penning trap investigated with FT-ICR detection. Appl. Phys. B 107, 1019–1029 (2012). https://doi.org/10.1007/s00340-011-4865-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4865-9

Keywords

Navigation