Skip to main content
Log in

Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a broadly tunable, long-cavity Ti:sapphire laser oscillator being mode-locked in the net negative intracavity dispersion regime by Kerr-lens mode-locking, delivering τ FWHM<300 fs pulses at 22 MHz repetition rate. The wavelength of the laser can be tuned over a 170 nm wide range between 712 nm and 882 nm. Having a typical pump power of 2.6 W, the maximum pulse peak power is 60 kW. Comparison of the reported laser with a standard, 76 MHz Ti:sapphire oscillator regarding two-photon excitation efficiency in a laser scanning microscope shows that the 22 MHz laser generates the same fluorescence signal at considerably, 1.82 times lower average power, which is expected to result in a reduced photothermal damage probability of biological samples. This fact along with the broad tunability and a low pump power requirement makes this cost-effective laser an ideal light source for nonlinear microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. König, T.W. Becker, P. Fischer, I. Riemann, K.-J. Halbhuber, Opt. Lett. 24, 113 (1999)

    Article  ADS  Google Scholar 

  2. H.G. Breunig, H. Studier, K. König, Opt. Express 18, 7857 (2010)

    Article  Google Scholar 

  3. K. König, Proc. SPIE 7883, 78830D (2011)

    Article  Google Scholar 

  4. B.R. Masters, P.T.C. So, C. Buehler, N. Barry, J.D. Sutin, W.W. Mantulin, E. Gratton, J. Biomed. Opt. 9, 1265 (2004)

    Article  ADS  Google Scholar 

  5. S.H. Cho, B.E. Bouma, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 24, 417 (1999)

    Article  ADS  Google Scholar 

  6. E.R. Tkaczyk, J.Y. Ye, S. Katnik, K. Luker, G. Luker, J.R. Baker, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America, Washington, 2007), paper CTuP7

    Google Scholar 

  7. E.R. Tkaczyk, C.F. Zhong, J.Y. Ye, S. Katnik, A. Myc, T. Thomas, K.E. Luker, G.D. Luker, J.R. Baker, in Novel Optical Instrumentation for Biomedical Applications III, ed. by C. Depeursinge. Proceedings of SPIE-OSA Biomedical Optics, vol. 6631 (Optical Society of America, Washington, 2007), paper 6631_31

    Chapter  Google Scholar 

  8. R. Carriles, K.E. Sheetz, E.E. Hoover, J.A. Squier, V. Barzda, Opt. Express 16, 10364 (2008)

    Article  ADS  Google Scholar 

  9. K.E. Sheetz, E.E. Hoover, R. Carriles, D. Kleinfeld, J.A. Squier, Opt. Express 16, 17574 (2008)

    Article  ADS  Google Scholar 

  10. D. Sandkuijl, R. Cisek, A. Major, V. Barzda, Biomed. Opt. Express 1, 895 (2010)

    Article  Google Scholar 

  11. S. Lévêque-Fort, D.N. Papadopoulos, S. Forget, F. Balembois, P. Georges, Opt. Lett. 30, 168 (2005)

    Article  ADS  Google Scholar 

  12. A. Major, V. Barzda, P.A.E. Piunno, S. Musikhin, U.J. Krull, Opt. Express 14, 5285 (2006)

    Article  ADS  Google Scholar 

  13. P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, C. Lesvigne, V. Couderc, P. Leproux, A. Tonello, P. Georges, Opt. Express 16, 18844 (2008)

    Article  ADS  Google Scholar 

  14. J.D. Kafka, M.L. Watts, J.-W.J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992)

    Article  ADS  Google Scholar 

  15. E.J. Mayer, J. Möbius, A. Euteneuer, W.W. Rühle, R. Szipőcs, Opt. Lett. 22, 528 (1997)

    Article  ADS  Google Scholar 

  16. B. Császár, A. Kőházi-Kis, R. Szipőcs, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Baltimore, Maryland, USA, 2005. Technical Digest (CD) (Optical Society of America, Washington, 2005), paper JWB15

    Google Scholar 

  17. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)

    Article  ADS  Google Scholar 

  18. F. Krausz, M.E. Fermann, T. Brabec, P.F. Curley, M. Hofer, M.H. Ober, C. Spielmann, E. Wintner, A.J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992)

    Article  ADS  Google Scholar 

  19. M. Müller, J. Squier, G.J. Brakenhoff, Opt. Lett. 20, 1038 (1995)

    Article  ADS  Google Scholar 

  20. F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf, Proc. SPIE 6191, 619105 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the fruitful discussions with Attila Kolonics on biological issues related to nonlinear microscopy. We also thank Attila Szigligeti and Dóra Haluszka for their technical assistance. This research was supported by the Hungarian Development Agency (NFÜ) under contract no. TECH-09-A2-2009-0134 and by R&D Ultrafast Lasers Ltd. under contract no. BAROSS-KM07-KM-TERM-07-2008-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Antal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antal, P.G., Szipőcs, R. Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy. Appl. Phys. B 107, 17–22 (2012). https://doi.org/10.1007/s00340-011-4830-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4830-7

Keywords

Navigation