Skip to main content

Advertisement

Log in

Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kim, J.A. Cox, J. Chen, F.X. Kartner, Nat. Photonics 2, 733 (2008) and references therein

    Article  ADS  Google Scholar 

  2. J. Kim, J. Chen, J. Cox, F.X. Kartner, Opt. Lett. 32, 3519 (2007)

    Article  ADS  Google Scholar 

  3. S. Weyers, B. Lipphardt, H. Schnatz, Phys. Rev. A 79, 031803R (2009)

    Article  ADS  Google Scholar 

  4. J. Millo, M. Abgrall, M. Lours, E.M.L. English, H. Jiang, J. Guéna, A. Clairon, M.E. Tobar, S. Bize, Y. Le Coq, G. Santarelli, Appl. Phys. Lett. 94, 141105 (2009)

    Article  ADS  Google Scholar 

  5. R. Holzwarth, T. Udem, T.W. Hansch, J.C. Knight, W.J. Wadsworth, P.St.J. Russel, Phys. Rev. Lett. 85, 2264 (2000)

    Article  ADS  Google Scholar 

  6. T.M. Ramond, S.A. Diddams, L. Hollberg, A. Bartels, Opt. Lett. 27, 1842 (2002)

    Article  ADS  Google Scholar 

  7. Y.Y. Jiang, A.D. Ludlow, N.D. Lemke, R.W. Fox, J.A. Sherman, L.-S. Ma, C.W. Oates, Nat. Photonics 5, 158 (2011)

    Article  ADS  Google Scholar 

  8. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007)

    Article  ADS  Google Scholar 

  9. S.A. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)

    Article  ADS  Google Scholar 

  10. J. Millo, D.V. Magalhaes, C. Mandache, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79, 053829 (2009)

    Article  ADS  Google Scholar 

  11. D.R. Leibrandt, M.J. Thorpe, M. Notcutt, R. Drullinger, T. Rosenband, J.C. Bergquist, Opt. Express 19, 3471 (2011)

    Article  ADS  Google Scholar 

  12. J. Millo, R. Boudot, M. Lours, P.Y. Bourgeois, A.N. Luiten, Y. Le Coq, Y. Kersalé, G. Santarelli, Opt. Lett. 34, 3707 (2009)

    Article  Google Scholar 

  13. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersalé, A.N. Luiten, Y. Le Coq, G. Santarelli, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 886 (2011)

    Article  Google Scholar 

  14. T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates, S.A. Diddams, Nat. Photonics 5, 425 (2011)

    Article  ADS  Google Scholar 

  15. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersalé, G. Santarelli, Y. Le Coq, Appl. Phys. Lett. 96, 211105 (2010)

    Article  ADS  Google Scholar 

  16. J. Kim, F.X. Kartner, Opt. Lett. 35, 2022 (2010)

    Article  ADS  Google Scholar 

  17. J.J. McFerran, E.N. Ivanov, A. Bartels, G. Wilpers, C.W. Oates, S.A. Diddams, L. Hollberg, Electron. Lett. 41, 650 (2005)

    Article  Google Scholar 

  18. A. Bartels, S.A. Diddams, C.W. Oates, G. Wilpers, J.C. Bergquist, W.H. Oskay, L. Hollberg, Opt. Lett. 30, 667 (2005)

    Article  ADS  Google Scholar 

  19. E.N. Ivanov, J.J. McFerran, S.A. Diddams, L. Hollberg, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 736 (2007) and references therein

    Article  Google Scholar 

  20. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, S. Diddams, IEEE Photonics J. 3, 140 (2011)

    Article  Google Scholar 

  21. D. Kuhl, F. Hieronymi, E. Holger Böttcher, T. Wolf, D. Bimberg, J. Kuhl, M. Klingenstein, J. Lightwave Technol. 10, 753 (1992)

    Article  ADS  Google Scholar 

  22. K.J. Williams, R.D. Esman, M. Dagenais, IEEE Photonics Technol. Lett. 6, 639 (1994)

    Article  ADS  Google Scholar 

  23. M. Dentan, B. de Cremoux, J. Lightwave Technol. 8, 1137 (1990)

    Article  ADS  Google Scholar 

  24. E.N. Ivanov, S.A. Diddams, L. Hollberg, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1068 (2005)

    Article  Google Scholar 

  25. A. Joshi, S. Datta, IEEE Photonics Technol. Lett. 21, 1360 (2009)

    Article  ADS  Google Scholar 

  26. B. Lorbeer, J. Muller, F. Ludwig, F. Loehl, H. Schlarb, A. Winter, Proceedings of DIPAC 2007 (2007), p. 250

    Google Scholar 

  27. K. Wu, C. Ouyang, J.H. Wong, S. Aditya, P. Shum, IEEE Photonics Technol. Lett. 23, 468 (2011)

    Article  ADS  Google Scholar 

  28. M.S. Kirchner, D.A. Braje, T.M. Fortier, A.M. Weiner, L. Hollberg, S.A. Diddams, Opt. Lett. 34, 872 (2009)

    Article  ADS  Google Scholar 

  29. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hansch, T. Udem, Appl. Phys. B 96, 251 (2009)

    Article  ADS  Google Scholar 

  30. M.A. Preciato, M.A. Muriel, Opt. Express 16, 11162 (2008)

    Article  ADS  Google Scholar 

  31. S. Min, Y. Zhao, S. Fleming, Opt. Commun. 277, 411 (2007)

    Article  ADS  Google Scholar 

  32. J. Magné, PhD thesis. Université Laval Québec (2007)

  33. A. Haboucha, W. Zhang, T. Li, M. Lours, A.N. Luiten, Y. Le Coq, G. Santarelli, arXiv:1106.5195v2, Opt. Lett. (2011, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Le Coq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Li, T., Lours, M. et al. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Appl. Phys. B 106, 301–308 (2012). https://doi.org/10.1007/s00340-011-4710-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4710-1

Keywords

Navigation