Skip to main content
Log in

Order to disorder optical phase transition in random photonic crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Transition process of optical modal properties induced by the introduction of randomness into random photonic crystals is investigated by a computational method. We analyze an impulse response of two-dimensional triangular photonic crystals, in which the positions of the air holes are slightly deviated to random directions. It is shown that the appropriate degree of random departure from a perfect crystal state gives rise to multiple scattering of low group velocity band-edge modes and supports their strong Anderson localization. The achieved confinement efficiency of light exceeds the one obtained in the perfect photonic crystal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Watts, S.H. Strogatz, Nature 398, 440 (1998)

    Article  ADS  Google Scholar 

  2. D. Achlioptas, R.M. D’Souza, J. Spencer, Science 323, 1453 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. C. Toninelli, E. Vekris, G.A. Ozin, S. John, D. Wiersma, Phys. Rev. Lett. 101, 123901 (2009)

    Article  ADS  Google Scholar 

  4. P.D. García, R. Sapienza, Á. Blanco, C. López, Adv. Mater. 19, 2597 (2007)

    Article  Google Scholar 

  5. H. Altug, D. Englund, J. Vuckovic, Nat. Phys. 2, 484 (2006)

    Article  Google Scholar 

  6. C. Sauvan, P. Lalanne, J.P. Hugonin, Phys. Rev. B 71, 165118 (2005)

    Article  ADS  Google Scholar 

  7. Y. Akahane, T. Asano, B.-S. Song, S. Noda, Nature 425, 944 (2003)

    Article  ADS  Google Scholar 

  8. H. Gersen, T.J. Karle, R.J. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Phys. Rev. Lett. 94, 073903 (2005)

    Article  ADS  Google Scholar 

  9. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001)

    Article  ADS  Google Scholar 

  10. M. Bayindir, E. Ozbay, B. Temelkuran, M.M. Sigalas, C.M. Soukoulis, R. Biswas, K.M. Ho, Phys. Rev. B 63, 081107 (2001)

    Article  ADS  Google Scholar 

  11. S. Boutami, B. Ben Bakir, X. Letartre, J.L. Leclercq, P. Regreny, P. Viktorovitch, Opt. Express 15, 12443 (2007)

    Article  ADS  Google Scholar 

  12. S. Boutami, B. Benbakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, M. Strassner, Opt. Express 14, 3129 (2006)

    Article  ADS  Google Scholar 

  13. R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N.F. van Hulst, N.F.K. Asakawa, L. Kuipers, Opt. Express 14, 1658 (2006)

    Article  ADS  Google Scholar 

  14. P. Pottier, M. Gnan, R.M. De La Rue, Opt. Express 15, 6569 (2007)

    Article  ADS  Google Scholar 

  15. T.F. Krauss, J. Phys. D 40, 2666 (2007)

    Article  ADS  Google Scholar 

  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, Appl. Phys. Lett. 81, 5102 (2002)

    Article  ADS  Google Scholar 

  17. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, S.-B. Kim, Appl. Phys. Lett. 83, 3870 (2003)

    Article  ADS  Google Scholar 

  18. B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, J.M. Fedeli, Appl. Phys. Lett. 88, 081113 (2006)

    Article  ADS  Google Scholar 

  19. L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, P. Viktorovitch, Opt. Express 17, 9780 (2009)

    Article  ADS  Google Scholar 

  20. R. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M.J. Steel, A. Rahmani, Opt. Express 17, 5439 (2009)

    Article  ADS  Google Scholar 

  21. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  22. P.W. Anderson, Philos. Mag. B. 52, 505 (1985)

    Article  Google Scholar 

  23. S. John, Phys. Rev. Lett. 53, 2169 (1984)

    Article  ADS  Google Scholar 

  24. H. Cao, J.Y. Xu, D.Z. Zhang, Phys. Rev. Lett. 84, 5584 (2000)

    Article  ADS  Google Scholar 

  25. D.S. Wiersma, Nat. Photonics 3, 246 (2009)

    Article  ADS  Google Scholar 

  26. P. Sebbah, C. Vanneste, Phys. Rev. B 66, 144202 (2002)

    Article  ADS  Google Scholar 

  27. S. Takeda, M. Obara, Appl. Phys. B 98, 267 (2010)

    Article  ADS  Google Scholar 

  28. A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  29. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Nature 390, 671 (1997)

    Article  ADS  Google Scholar 

  30. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  31. J. Topolancik, F. Vollmer, Appl. Phys. Lett. 91, 201102 (2007)

    Article  ADS  Google Scholar 

  32. J. Topolancik, B. Ilic, F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007)

    Article  ADS  Google Scholar 

  33. C. Conti, A. Fratalocchi, Nat. Phys. 4, 794 (2008)

    Article  Google Scholar 

  34. A. Yamilov, H. Cao, Phys. Rev. A 69, 031803 (2004)

    Article  ADS  Google Scholar 

  35. S.G. Johnson, J.D. Joannopoulos, Opt. Express 8, 173 (2001)

    Article  ADS  Google Scholar 

  36. J. Vučković, M. Lončar, H. Mabuchi, A. Sherer, Phys. Rev. E 65, 016608 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Obara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, S., Hamada, S., Peretti, R. et al. Order to disorder optical phase transition in random photonic crystals. Appl. Phys. B 106, 95–100 (2012). https://doi.org/10.1007/s00340-011-4595-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4595-z

Keywords

Navigation