Skip to main content
Log in

Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In vacuum high-intensity lasers can cause photon–photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon–photon interaction is polarization-mediated described by the Euler–Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936). [arXiv:physics/0605038]

    Article  ADS  Google Scholar 

  2. V. Weisskopf, Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV, 166 (1936)

    Google Scholar 

  3. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J.S. Toll, The dispersion relation for light and its application to problems involving electron pairs. Dissertation, Princeton, 1952

  5. N.B. Narozhnyi, Sov. Phys. JETP 28, 371 (1969)

    ADS  Google Scholar 

  6. V.I. Ritus, Ann. Phys. 69, 555 (1972)

    Article  ADS  Google Scholar 

  7. W. Dittrich, H. Gies, Probing the Quantum Vacuum (Springer, Berlin, 2000)

    Google Scholar 

  8. G.M. Shore, Nucl. Phys. B 778, 219 (2007). [arXiv:hep-th/0701185]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T. Heinzl, A. Ilderton, Eur. Phys. J. D 55, 359 (2009). [arXiv:0811.1960 [hep-ph]]

    Article  ADS  Google Scholar 

  10. G.V. Dunne, H. Gies, R. Schützhold, Phys. Rev. D 80, 111301 (2009). [arXiv:0908.0948 [hep-ph]]

    Article  ADS  Google Scholar 

  11. V.N. Baier, V.M. Katkov, Phys. Lett. A 374, 2201 (2010). [arXiv:0912.5250 [hep-ph]]

    Article  ADS  Google Scholar 

  12. N.B. Narozhny, Zh. Eksp. Teor. Fiz. 54, 676 (1968)

    Google Scholar 

  13. R. Schützhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008). [arXiv:0807.0754 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  14. N.B. Norozhny, Sov. Phys. JETP 27, 360 (1968)

    ADS  Google Scholar 

  15. B. Marx, I. Uschmann, S. Höfer, R. Lötzsch, O. Werhrhan, E. Förster, M. Kaluza, T. Stöhlker, H. Gies, C. Detlefs, T. Roth, J. Härtwig, G.G. Paulus, Opt. Commun. 284, 915 (2011)

    Article  ADS  Google Scholar 

  16. http://www.extreme-light-infrastructure.eu/

  17. J. Rafelski, H.-T. Elze, Electromagnetic fields in the QCD vacuum, hep-ph/9806389

  18. H.-T. Elze, B. Müller, J. Rafelski, Interfering QCD/QED vacuum polarization, hep-ph/9811372

  19. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]

    MathSciNet  ADS  MATH  Google Scholar 

  20. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000). [arXiv:hep-th/9905111]

    Article  MathSciNet  ADS  Google Scholar 

  21. A.V. Zayakin, Properties of the vacuum in models for QCD: holography vs. resummed field theory: a comparative study, PhD Thesis, LMU Munich, 2010

  22. E. Zavattini, G. Zavattini, G. Ruoso, G. Raiteri, E. Polacco, E. Milotti, V. Lozza, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, M. Bregant, Phys. Rev. D 77, 032006 (2008). [arXiv:0706.3419 [hep-ex]]

    Article  ADS  Google Scholar 

  23. A.N. Luiten, J.C. Petersen, Phys. Rev. A 70, 033801 (2004)

    Article  ADS  Google Scholar 

  24. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 97, 083603 (2006). [arXiv:hep-ph/0602039]

    Article  ADS  Google Scholar 

  25. B. King, A. Di Piazza, C.H. Keitel, Nat. Photonics 4, 92 (2010)

    Article  ADS  Google Scholar 

  26. A.E. Siegman, Lasers (University Science Books, California, 1986)

    Google Scholar 

  27. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, Oxford, 1997)

    Google Scholar 

  28. J.W. Goodman, Introduction to Fourie Optics, Mcgraw-Hill Classic Textbook Reissue (McGraw-Hill, New Delhi, 1997)

    Google Scholar 

  29. R. Karplus, M. Neuman, Phys. Rev. 83, 776 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  30. B. De Tollis, Nuovo Cimento 32, 757 (1964)

    Article  Google Scholar 

  31. B. De Tollis, Nuovo Cimento 35, 1182 (1965)

    Article  Google Scholar 

  32. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Homma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, K., Habs, D. & Tajima, T. Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers. Appl. Phys. B 104, 769–782 (2011). https://doi.org/10.1007/s00340-011-4568-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4568-2

Keywords

Navigation