Skip to main content
Log in

Analysis of tunable bandgaps in liquid crystal-infiltrated 2D silicon photonic crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a theoretical study on two-dimensional photonic crystals composed of silicon and the E7 liquid crystal. We analyze how the optical axis orientation of the liquid crystal influences the photonic bands and bandgaps, for the case when the Maxwell equations can be decoupled into the TE and TM modes. We consider two different structures, a triangular lattice of E7 liquid crystal cylinders in a silicon background and a triangular lattice of silicon cylinders in an E7 liquid crystal background. The effect of the liquid crystal anisotropy on the geometry of the irreducible Brillouin zone allows us to propose a simplified way to calculate the photonic bandgaps. Results show that the bandgap width and center frequency have a 60° periodicity for both structures. Using the plane-wave expansion method, we determined the maximum bandgap and the optimal radius of the cylinders for each structure. Finally, for the second structure, we propose an optical switch with a 50% duty cycle. These structures can be applied to design tunable photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  3. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999)

    Article  Google Scholar 

  4. R.D. Meade, K.D. Brommer, A.M. Rappe, J.D. Joannopoulos, Phys. Rev. B 44, 13772 (1991)

    Article  ADS  Google Scholar 

  5. J.C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, Science 282, 1476 (1998)

    Article  Google Scholar 

  6. K. Busch, S. John, Phys. Rev. Lett. 83, 967 (1999)

    Article  ADS  Google Scholar 

  7. H. Takeda, K. Yoshino, J. Appl. Phys. 92, 5658 (2002)

    Article  ADS  Google Scholar 

  8. I.S. Maksymov, L.F. Marsal, J. Pallarès, Opt. Quantum Electron. 38, 149 (2006)

    Article  Google Scholar 

  9. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, J. Martí, Opt. Express 12, 161 (2004)

    Article  ADS  Google Scholar 

  10. S.M. Weiss, H.M. Ouyang, J.D. Zhang, P.M. Fauchet, Opt. Express 13, 1090 (2005)

    Article  ADS  Google Scholar 

  11. P. Kopperschmidt, Appl. Phys. B 73, 717 (2001)

    Article  ADS  Google Scholar 

  12. J. Arriaga, L. Dobrzynski, B. Djafari-Rouhani, R. Biswas, C.G. Ding, J. Appl. Phys. 104, 063108 (2008)

    Article  ADS  Google Scholar 

  13. J. Cos, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Opt. Comm. 282, 1220 (2009)

    Article  ADS  Google Scholar 

  14. Ch. Schuller, J.P. Reithmaier, J. Zimmermann, M. Kamp, A. Forchel, S. Anand, Appl. Phys. Lett. 87, 121105 (2005)

    Article  ADS  Google Scholar 

  15. X. Sun, X. Tao, T. Ye, P. Sue, Y.-S. Szeto, Appl. Phys. B 87, 267 (2007)

    Article  ADS  Google Scholar 

  16. V.A. Tolmachev, T.S. Perova, S.A. Grudinkin, V.A. Melnikov, E.V. Astrova, Y.A. Zharova, Appl. Phys. Lett. 90, 011908 (2007)

    Article  ADS  Google Scholar 

  17. F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele, Phys. Rev. B 63, 161101 (2001) (Rapid Communication)

    Article  ADS  Google Scholar 

  18. S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, Phys. Rev. B 61, 2389 (2000) (Rapid Communication)

    Article  ADS  Google Scholar 

  19. N. Susa, J. Appl. Phys. 91, 3501 (2002)

    Article  ADS  Google Scholar 

  20. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 2008)

    MATH  Google Scholar 

  21. G. Alagappan, X.W. Sun, P. Shum, M.B. Yu, D. den Engelsen, J. Opt. Soc. Am. A 23, 2002 (2006)

    Article  ADS  Google Scholar 

  22. P.G. Luan, Z. Ye, Condensed Matter 1, 0105428 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Marsal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cos, J., Ferré-Borrull, J., Pallarès, J. et al. Analysis of tunable bandgaps in liquid crystal-infiltrated 2D silicon photonic crystals. Appl. Phys. B 100, 833–839 (2010). https://doi.org/10.1007/s00340-010-4172-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4172-x

Keywords

Navigation