Skip to main content
Log in

Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We introduce a hybrid photonic surface plasmon ring resonator which consists of a silicon nitride (Si3N4) dielectric traveling-wave ring resonator vertically coupled to a thin layer of metallic strip ring resonator made of Silver (Ag) on top. The cladding is assumed to be porous alumina on top of the metal layer, which provides more surface area for the adsorption of target molecules and their efficient interaction with the surface plasmon wave excited at the metal-cladding interface. Simulations show that this hybrid structure has a large refractive index sensitivity due to the excitation of surface plasmon waves and also a relatively narrow resonance linewidth due to the large quality factor of the photonic ring resonator. The Finite Element method is used to systematically design the hybrid structure and to investigate the performance of the hybrid resonator as a refractive index sensor. The proposed structure is very compact and can be implemented on a chip in an integrated platform. Thus, it can be used for lab-on-a-chip sensing applications and is capable of being spectrally and spatially multiplexed for muti-analyte sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Fan, I.M. White, S.I. Shopva, H. Zhu, J.D. Suter, Y. Sun, Anal. Chem. Acta 620, 8 (2008)

    Article  Google Scholar 

  2. J. Homola, Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, vol. 4 (Springer, Berlin, 2006)

    Google Scholar 

  3. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J.H. Schmid, E. Post, IEEE Photonics Technol. Lett. 18, 2520 (2006)

    Article  ADS  Google Scholar 

  4. R. Philip-Chandy, P.J. Scully, P. Eldridge, H.J. Kadim, M. Gerard Grapin, M.G. Jonca, M.G. D’Ambrosio, F. Colin, IEEE J. Sel. Top. Quantum Electron. 6, 764 (2000)

    Article  Google Scholar 

  5. K.D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Opt. Express 15, 7610 (2007)

    Article  ADS  Google Scholar 

  6. A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, K.J. Vahala, Science 317, 783 (2007)

    Article  ADS  Google Scholar 

  7. E. Chow, A. Grot, L.W. Mirkarimi, M. Sigalas, G. Girolami, Opt. Lett. 29, 1093 (2004)

    Article  ADS  Google Scholar 

  8. B. Liedberg, C. Nylander, I. Lundstrom, Sens. Actuators 4, 299 (1983)

    Article  Google Scholar 

  9. F.B. Myers, L.P. Lee, Lab. Chip. 8, 2015 (2008)

    Article  Google Scholar 

  10. J. Dostalek, H. Vaisocherova, J. Homola, Sens. Actuators B 108, 758 (2005)

    Article  Google Scholar 

  11. S. Fang, H.J. Lee, A.W. Wark, R.M. Corn, J. Am. Chem. Soc. 128, 1404 (2006)

    Article  Google Scholar 

  12. R.D. Harris, J.S. Wilkinson, Sens. Actuators B: Chem. 29, 261 (1995)

    Article  Google Scholar 

  13. R. Slavik, J. Homola, J. Ctyroky, E. Brynda, Sens. Actuators B 74, 106 (2001)

    Article  Google Scholar 

  14. Z. Qi, I. Honma, H. Zhou, Appl. Phys. Lett. 90, 181112 (2007)

    Article  ADS  Google Scholar 

  15. M.W. Kim, Y.-H. Chen, J. Moore, Y.-K. Wu, L.J. Guo, P. Bhattacharya, P.C. Ku, J. Sel. Top. Quantum Electron. 15, 1551 (2009)

    Google Scholar 

  16. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K.J. Vahala, Nature 457, 455 (2009)

    Article  ADS  Google Scholar 

  17. B. Momeni, E.S. Hosseini, M. Askari, M. Soltani, A. Adibi, Opt. Commun. 282, 3168 (2009)

    Article  ADS  Google Scholar 

  18. M. Chamanzar, B. Momeni, A. Adibi, Opt. Lett. 34, 220 (2009)

    Article  ADS  Google Scholar 

  19. A.G. Koutsioubas, N. Spliopoulos, D.L. Anastassopoulos, A.A. Vradis, G.D. Priftis, Mater. Sci. Eng. B 165, 270 (2009)

    Article  Google Scholar 

  20. A.G. Koutsioubas, N. Spliopoulos, D.L. Anastassopoulos, A.A. Vradis, G.D. Priftis, J. Appl. Phys. 103, 094521 (2008)

    Article  ADS  Google Scholar 

  21. F.S. Linger, C.R. Taitt, Optical Biosensors: Today and Tomorrow (Elsevier, Amsterdam, 2008)

    Google Scholar 

  22. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  23. J.E. Spanier, I.P. Herman, Phys. Rev. B 61, 10437 (2000)

    Article  ADS  Google Scholar 

  24. M. Soltani, Ph.D. dissertation, Dept. Elect. Eng., Georgia Institute of Technology, Atlanta, GA (2009)

  25. I.M. White, X. Fan, Opt. Express 16, 1020 (2008)

    Article  ADS  Google Scholar 

  26. A. Yariv, Electron. Lett. 36, 321 (2000)

    Article  Google Scholar 

  27. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)

    Article  ADS  Google Scholar 

  28. K. Vahala, Optical Microcavities (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  29. M.K. Chin, S.T. Ho, J. Lightwave Technol. 16, 1433 (1998)

    Article  ADS  Google Scholar 

  30. W. Bogaerts, P. Dumon, D.V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, R. Baets, J. Sel. Top. Quantum Electron. 12, 1394 (2006)

    Article  Google Scholar 

  31. E. Shah Hosseini, S. Yegnanarayanan, A.H. Atabaki, M. Soltani, A. Adibi, Opt. Express 18, 14543 (2010)

    Google Scholar 

  32. T.M. Squires, R.J. Messinger, S.R. Manalis, Nature Biotechnol. 26, 417 (2008)

    Article  Google Scholar 

  33. E. Krioukov, D.J.W. Klunder, A. Driessen, J. Greve, C. Otto, Opt. Lett. 27, 512 (2002)

    Article  ADS  Google Scholar 

  34. A. Yalcın, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Unlu, J. Sel. Top. Quantum Electron. 12, 148 (2006)

    Article  Google Scholar 

  35. F. Vollmer, S. Arnold, Nature Methods 5, 1591 (2008)

    Article  Google Scholar 

  36. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets, Opt. Express 17, 14627 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chamanzar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamanzar, M., Soltani, M., Momeni, B. et al. Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl. Phys. B 101, 263–271 (2010). https://doi.org/10.1007/s00340-010-4034-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4034-6

Keywords

Navigation