Skip to main content
Log in

Elementary-field modeling of surface-plasmon excitation with partially coherent light

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a mathematical model and its numerical implementation for the analysis of the interaction of spatially partially coherent electromagnetic fields with micro- and nanostructured objects. The model is based on the decomposition of the incident field into a set of fully coherent but mutually uncorrelated elementary field modes, and the use of the Fourier Modal Method (FMM) with the S-matrix propagation algorithm. We apply the model to studies of the excitation of surface plasmons in thin metallic slabs, nanowires, and resonant structures. We demonstrate, e.g., that the plasmon excitation efficiency is not essentially affected by the degree of spatial coherence. However, certain plasmon interference effects can be efficiently smoothed out by using illumination with reduced coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  2. V.M. Shalaev, A.K. Sarychev, Electrodynamics of Metamaterials (World Scientific, Singapore, 2007)

    MATH  Google Scholar 

  3. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  4. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, M. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002)

    Article  ADS  Google Scholar 

  5. A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Phys. Rev. Lett. 90, 107404 (2003)

    Article  ADS  Google Scholar 

  6. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005)

    Article  ADS  Google Scholar 

  7. H.F. Schouten, N. Kuznin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ’t Hooft, D. Lenstra, E.R. Eliel, Phys. Rev. Lett. 94, 053901 (2005)

    Article  ADS  Google Scholar 

  8. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)

    Article  ADS  Google Scholar 

  9. Q. Cao, P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002)

    Article  ADS  Google Scholar 

  10. F.J. Garcia-Vidal, H.J. Lezec, T.W. Ebbesen, L. Martin-Moreno, Phys. Rev. Lett. 90, 213901 (2003)

    Article  ADS  Google Scholar 

  11. H.J. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    Article  ADS  Google Scholar 

  12. B. Bai, K. Konishi, X. Meng, P. Karvinen, A. Lehmuskero, M. Kuwata-Gonokami, Y. Svirko, J. Turunen, Opt. Express 17, 688 (2009)

    Article  ADS  Google Scholar 

  13. S. Ravets, J.F. Rodier, B. Ea Kim, J.P. Hugonin, L. Jacubowiez, P. Lalanne, J. Opt. Soc. Am. B 26, B28 (2009)

    Article  ADS  Google Scholar 

  14. C.H. Gan, G. Gbur, T.D. Visser, Phys. Rev. Lett. 98, 043908 (2007)

    Article  ADS  Google Scholar 

  15. E. Wolf, J. Opt. Soc. Am. 72, 343 (1982)

    Article  ADS  Google Scholar 

  16. J. Huttunen, A.T. Friberg, J. Turunen, Phys. Rev. E 52, 3081 (1995)

    Article  ADS  Google Scholar 

  17. P. Vahimaa, J. Turunen, J. Opt. Soc. Am. A 14, 54 (1997)

    Article  ADS  Google Scholar 

  18. F. Gori, Opt. Commun. 157, 301 (1980)

    Article  ADS  Google Scholar 

  19. A. Starikov, E. Wolf, J. Opt. Soc. Am. A 72, 923 (1982)

    Article  ADS  Google Scholar 

  20. A. Starikov, J. Opt. Soc. Am. 73, 1538 (1982)

    Article  ADS  Google Scholar 

  21. P. Lalanne, G.M. Morris, J. Opt. Soc. Am. A 13, 779 (1996)

    Article  ADS  Google Scholar 

  22. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996)

    Article  ADS  Google Scholar 

  23. L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)

    Article  ADS  Google Scholar 

  24. L. Li, J. Opt. Soc. Am. A 20, 655 (2003)

    Article  ADS  Google Scholar 

  25. L. Li, J. Opt. A, Pure Appl. Opt. 5, 345 (2003)

    Article  ADS  Google Scholar 

  26. F. Gori, C. Palma, Opt. Commun. 27, 185 (1978)

    Article  ADS  Google Scholar 

  27. F. Gori, Opt. Acta 27, 1025 (1980)

    ADS  Google Scholar 

  28. P. Vahimaa, J. Turunen, Opt. Express 14, 1376 (2006)

    Article  ADS  Google Scholar 

  29. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  30. A. Luis, J. Opt. Soc. Am. A 24, 2070 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  31. J.P. Hugonin, P. Lalanne, J. Opt. Soc. Am. A 22, 1844 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Hyvärinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyvärinen, H.J., Turunen, J. & Vahimaa, P. Elementary-field modeling of surface-plasmon excitation with partially coherent light. Appl. Phys. B 101, 273–282 (2010). https://doi.org/10.1007/s00340-010-4012-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4012-z

Keywords

Navigation