Skip to main content
Log in

Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports the dopant ion (Nd3+) concentration effects on its luminescence properties in a new glass system based on barium-alumino-metaphosphates. Amongst the studied concentrations range of 0.276–13.31×1020 ions/cm3, the glass with 2.879×1020 ions/cm3 (1 mol%) Nd3+ concentration shows intense NIR emission from 4F3/2 excited state, followed by a decrease in emission intensity for further increase in Nd3+ ion concentration. The observed luminescence quenching is ascribed to Nd3+ self-quenching through the donor-donor migration assisted cross-relaxation mechanism. The microscopic energy transfer parameters for donor-acceptor energy transfer, C DA, and donor-donor energy migration, C DD, have been obtained from the theoretical fittings to experimental decay curves and the spectral overlap model respectively. The C DD parameters (×10−39 cm6/sec) are found to be about three orders greater than that of C DA (×10−42 cm6/sec) for Nd3+ self-quenching in this host, demonstrating that the excitation energy migration among donors is due to the hopping mechanism. The energy transfer micoparameters obtained in the present study are comparable to the values reported for commercially available laser glasses LHG-8 and Q-98.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Payne, C.D. Marshall, A. Bayramian, G.D. Wilke, J.S. Hayden, Appl. Phys. B 61, 257 (1995)

    Article  ADS  Google Scholar 

  2. J.R. Thornton, W.D. Fountain, G.W. Flint, T.G. Crow, Appl. Opt. 8, 1087 (1969)

    Article  ADS  Google Scholar 

  3. T.T. Basiev, Sov. J. Quantum Electron. 13, 370 (1983)

    Article  ADS  Google Scholar 

  4. A.G. Avanesov, Y.K. Voron’ko, B.I. Denker, G.V. Maksimova, V.V. Osiko, A.M. Prokhorov, I.A. Schherbakov, Sov. J. Quantum Electron. 9, 935 (1979)

    Article  ADS  Google Scholar 

  5. B.I. Denker, V.V. Siko, P.P. Pashinin, A.M. Prokhorov, Sov. J. Quantum Elctron. 11, 289 (1981)

    Article  ADS  Google Scholar 

  6. C. Tu, Z. Zhu, J. Li, Y. Huang, B. Wu, M. Huang, Z. Chen, Opt. Mater. 27, 167 (2004)

    Article  ADS  Google Scholar 

  7. J.H. Campbell, T.I. Suratwala, J. Non-Crystal. Solids 263, 318 (2000)

    Article  ADS  Google Scholar 

  8. A.A. Kaminskii, K. Ueda, N. Uehara, Jpn. J. Appl. Phys. 32, L586 (1993)

    Article  ADS  Google Scholar 

  9. T.W. Pollak, W.F. Wing, R.J. Grasso, E.P. Chicklis, H.P. Jenssen, IEEE J. Quantum Electron. 18, 159 (1982)

    Article  ADS  Google Scholar 

  10. A.G. Avanesov, Y.G. Basov, V.G. Garmash, B.I. Denker, N.N. Il’ichev, G.V. Maksimova, A.A. Malyutin, V.V. Osiko, P.P. Pashinin, A.M. Prokhorov, V.V. Sychev, Sov. J. Quantum Electron. 10, 644 (1980)

    Article  ADS  Google Scholar 

  11. J.L. Emmett, W.F. Krupke, J.B. Trenholme, Report UCRL—53344 (Lawrence-Livermore National Laboratory, Livermore, CA, 1982)

  12. B.M. Van Wonterghem, J.R. Murray, J.H. Campbell, D.R. Spek, C.M. Barker, L.C. Smith, D.F. Browning, W.C. Behrendt, Appl. Opt. 36, 4932 (1997)

    Article  ADS  Google Scholar 

  13. J. Dong, M. Bass, G. Walters, J. Opt. Soc. Am. B 21, 454 (2004)

    Article  ADS  Google Scholar 

  14. Y.M. Moustafa, K. El-Egili, J. Non-Cryst. Solids 240, 144 (1998)

    Article  ADS  Google Scholar 

  15. A.G. Avanesov, I.V. Vasil’ev, Y.K. Voron’ko, B.I. Denker, S.V. Zinov’ev, A.S. Kuznetsov, V.V. Osiko, P.P. Pashinin, A.M. Prokhorov, A.A. Semenov, Sov. J. Quantum Electron. 9, 937 (1979)

    Article  ADS  Google Scholar 

  16. I.E.C. Machado, L. Prado, L. Gomes, J.M. Prison, J.R. Martinelli, J. Non-Cryst. Solids 348, 113 (2004)

    Article  ADS  Google Scholar 

  17. J.A. Capobianco, P.P. Proulx, M. Bettinelli, F. Negrisolo, Phys. Rev. B 42, 4936 (1990)

    Article  ADS  Google Scholar 

  18. A.R. Kuznetsov, S.G. Lunter, S.I. Nikitina, A.G. Plyukhin, Y.K. Fedorov, J. Appl. Spectrosc. 56, 90 (1992)

    Article  Google Scholar 

  19. P.R. Ehrmann, J.H. Campbell, J. Am. Ceram. Soc. 85, 1061 (2002)

    Article  Google Scholar 

  20. W. El Shirbeeny, M.H. Aly, A.E. El-Samahy, K.M. Emad, Appl. Phys. 3, 122 (2007)

    Google Scholar 

  21. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49, 4424 (1968)

    Article  ADS  Google Scholar 

  22. C. Jacinto, S.L. Oliveira, L.A.O. Nunes, J.D. Myers, M.J. Myers, T. Catunda, Phys. Rev. B 73, 125107-1 (2006)

    ADS  Google Scholar 

  23. J.A. Caird, A.J. Ramponi, P.R. Staver, J. Opt. Soc. Am. B 8, 1391 (1991)

    Article  ADS  Google Scholar 

  24. M.C. Nostrand, R.H. Page, S.A. Payne, L.I. Isaenko, A.P. Yelisseyev, J. Opt. Soc. Am. B 18, 264 (2001)

    Article  ADS  Google Scholar 

  25. D.L. Huber, Phys. Rev. B 20, 2307 (1979)

    Article  ADS  Google Scholar 

  26. M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965)

    Article  ADS  Google Scholar 

  27. A.I. Burshtein, Sov. Phys. J. Exp. Theor. Phys. 35, 882 (1972)

    ADS  Google Scholar 

  28. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  ADS  Google Scholar 

  29. A. Braud, S. Girald, J.L. Doualan, R. Moncorge, IEEE J. Quantum Electron. 34, 2246 (1998)

    Article  ADS  Google Scholar 

  30. C. Hu, F.E. Muller-Karger, R.G. Zepp, Limnol. Oceanogr. 47, 1261 (2002)

    Google Scholar 

  31. L.R.P. Kassab, M.E. Fukumoto, L. Gomes, J. Opt. Soc. Am. B 22, 1255 (2005)

    Article  ADS  Google Scholar 

  32. F. Liegard, J.L. Doualan, R. Moncorge, M. Bettinelli, Appl. Phys. B 80, 985 (2005)

    Article  ADS  Google Scholar 

  33. L.D. Merkle, M. Dubinskii, K.L. Schepler, M. Hegde, Opt. Express 14, 3893 (2006)

    Article  ADS  Google Scholar 

  34. T.T. Basiev, Y.V. Orlovskii, Y.S. Privis, J. Lumin. 69, 187 (1996)

    Article  Google Scholar 

  35. V. Lupei, Opt. Mater. 16, 137 (2001)

    Article  ADS  Google Scholar 

  36. M. Yokota, O. Tanimoto, J. Phys. Soc. Jpn. 22, 779 (1967)

    Article  ADS  Google Scholar 

  37. I.R. Martin, V.D. Rodriguez, U.R. Rodriguez-Mendoza, V. Lavin, E. Montoya, D. Jaque, J. Chem. Phys. 111, 1191 (1999)

    Article  ADS  Google Scholar 

  38. L.D. da Vila, L. Gomes, L.V.G. Tarelho, S.J.L. Ribeiro, Y. Messedeq, J. Appl. Phys. 93, 3873 (2003)

    Article  ADS  Google Scholar 

  39. F.H. Jagosich, L. Gomes, L.V.G. Tarelho, L.C. Courrol, I.M. Ranieri, J. Appl. Phys. 91, 624 (2002)

    Article  ADS  Google Scholar 

  40. Y. Liu, Y. Chen, Y. Lin, Q. Tan, Z. Luo, Y. Huang, J. Opt. Soc. Am. B 24, 1046 (2007)

    Article  ADS  Google Scholar 

  41. C.M. Lawson, E.E. Freed, R.C. Powell, J. Chem. Phys. 76, 4171 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sontakke, A.D., Biswas, K., Mandal, A.K. et al. Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses. Appl. Phys. B 101, 235–244 (2010). https://doi.org/10.1007/s00340-010-4010-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4010-1

Keywords

Navigation