Skip to main content
Log in

Microfluidic sorting system based on optical force switching

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a versatile, and automatic method for sorting cells and particles in a three dimensional polydimethylsiloxane (PDMS) structure consisting of two cross-microchannels. As microspheres or yeast cells are fed continuously into a lower channel, a line shaped focused laser beam is applied (perpendicular to the direction of flow) at the crossing junction of the two channels. The scattering force of the laser beam was employed to push microparticles matching specific criteria upwards from one channel to another. The force depends on the intrinsic properties of the particles such as their refractive index and size, as well as the laser power and the fluid flow speed. The combination of these parameters gives a tunable selection criterion for the effective and efficient sorting of the particles. The introduction of the cylindrical lens into the optical train allows for simultaneous manipulation of multiple particles which has significantly increased the efficiency and throughput of the sorting. A high aspect ratio microchannel (A.R.=1.6) was found to enhance the sorting performance of the device. By careful control of the microparticle flow rate, near 100% sorting efficiency was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Haeberle, R. Zengerle, Lab Chip 7, 1094–1110 (2007)

    Article  Google Scholar 

  2. H.C. Hunt, J.S. Wilkinson, Microfluid Nanofluid 4, 53–79 (2008)

    Article  Google Scholar 

  3. L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Lab Chip 7, 1114–1120 (2007)

    Article  Google Scholar 

  4. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421–424 (2003)

    Article  ADS  Google Scholar 

  5. K. Ladavac, K. Kasza, D.G. Grier, Phys. Rev. E 70, 010901 (2004)

    Article  ADS  Google Scholar 

  6. A.M. Lacasta, J.M. Sancho, A.H. Romero, K. Lindenberg, Phys. Rev. Lett. 94, 160601 (2005)

    Article  ADS  Google Scholar 

  7. R.L. Smith, G.C. Spalding, K. Dholakia, M. MacDonald, J. Opt. A, Pure Appl. Opt. 9, 134–138 (2007)

    Article  ADS  Google Scholar 

  8. G. Milne, D. Rhodes, M. MacDonald, K. Dholakia, Opt. Lett. 32, 1144–1146 (2007)

    Article  ADS  Google Scholar 

  9. S.J. Hart, A.V. Terray, J. Arnold, T.A. Leski, Opt. Express 15(5), 2724–2731 (2007)

    Article  ADS  Google Scholar 

  10. S.J. Hart, A.V. Terray, J. Arnold, Appl. Phys. Lett. 91, 171121 (2007)

    Article  ADS  Google Scholar 

  11. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Nat. Biotech. 23, 83 (2005)

    Article  Google Scholar 

  12. R.F. Marchington, M. Mazilu, S. Kuriakose, V.G. Chavez, P.J. Reece, T.F. Krauss, M. Gu, K. Dholakia, Opt. Express 16(6), 3712–3726 (2008)

    Article  ADS  Google Scholar 

  13. R. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D. Marr, Opt. Express 12, 4390–4398 (2004)

    Article  ADS  Google Scholar 

  14. R.W. Applegate, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A.A. Said, Lab Chip 6, 422–426 (2006)

    Article  Google Scholar 

  15. J. Oakey, J. Allely, D.W.M. Marr, Biotechnol. Prog. 18, 1439–1442 (2002)

    Article  Google Scholar 

  16. J. Enger, M. Goksor, K. Ramser, P. Hagberg, D. Hanstorp, Lab Chip 4, 196–200 (2004)

    Article  Google Scholar 

  17. C.C. Lin, A. Chen, C.H. Lin, Biomed. Microdevices 10, 55–63 (2008)

    Article  Google Scholar 

  18. S.C. Chapin, V. Germain, E.R. Dufresne, Opt. Express 14(26), 13095 (2006)

    Article  ADS  Google Scholar 

  19. Y.Y. Sun, X.C. Yuan, L.S. Ong, J. Bu, S.W. Zhu, R. Liu, Appl. Phys. Lett. 90, 031107 (2007)

    Article  ADS  Google Scholar 

  20. F.C. Cheong, C.H. Sow, A.T.S. Wee, P. Shao, A.A. Bettiol, J.A. Van Kan, F. Watt, Appl. Phys. B (Lasers Opt.) 83(1), 121–125 (2006)

    Article  ADS  Google Scholar 

  21. K. Grujic, O.G. Helleso, J.P. Hole, J.S. Wilkinson, Opt. Express 13, 1–7 (2005)

    Article  ADS  Google Scholar 

  22. I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, K. Volke-Sepulveda, Appl. Phys. Lett. 88, 121116 (2006)

    Article  ADS  Google Scholar 

  23. J.A. van Kan, L.P. Wang, P.G. Shao, A.A. Bettiol, F. Watt, Nucl. Instrum. Methods Phys. Res. B 260, 353–356 (2007)

    Article  ADS  Google Scholar 

  24. R.F. Ismagilov, D. Rosmarin, P.J.A. Kenis, D.T. Chiu, W. Zhang, H.A. Stone, G.M. Whitesides, Anal. Chem. 73, 4682–4687 (2001)

    Article  Google Scholar 

  25. A.H. Latham, A.N. Tarpara, M.E. Williams, Anal. Chem. 79, 5746–5752 (2007)

    Article  Google Scholar 

  26. A. Ashkin, Appl. Phys. Lett. 19, 283–285 (1971)

    Article  ADS  Google Scholar 

  27. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bettiol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoi, SK., Udalagama, C., Sow, CH. et al. Microfluidic sorting system based on optical force switching. Appl. Phys. B 97, 859–865 (2009). https://doi.org/10.1007/s00340-009-3687-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3687-5

PACS

Navigation