Skip to main content
Log in

“Hot spots” induced near-field enhancements in Au nanoshell and Au nanoshell dimer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The influence of “hot spots” on the near-field properties of Au nanoshell and Au nanoshell dimers have been investigated by means of the finite element method. It is found with increasing the pinhole radius R that the maximal enhancement of near-field for Au nanoshell with pinhole parallel to the polarization increases from 17.906 at R=0 nm to 36.979 at R=0.8 nm, and then almost shows a negligible radius dependence. Large electric fields also can be observed inside the pinhole perpendicular to the polarization, which increases with increasing the pinhole radius. The near-field of Au nanoshell dimer depends strongly on the polarization and propagation directions of the incident light. Exponential decay behavior is found for the maximal enhancement of the electric field in the dimer junction as a function of the dimer separation. Furthermore, a very strong electric field is found in the junction between two Au nanoshells when the pinholes are located near the gap between the nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  2. J. Pendry, Science 285, 1687 (1999)

    Article  Google Scholar 

  3. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)

    Article  Google Scholar 

  4. R. Neuendorf, M. Quinten, U. Kreibig, J. Chem. Phys. 104, 6348 (1996)

    Article  ADS  Google Scholar 

  5. G.C. Schatz, Acc. Chem. Res. 17, 370 (1984)

    Article  Google Scholar 

  6. S.L. Westcott, J.B. Jackson, C. Radloff, N.J. Halas, Phys. Rev. B 66, 155431 (2002)

    Article  ADS  Google Scholar 

  7. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J.L. West, Anal. Chem. 75, 2377 (2003)

    Article  Google Scholar 

  8. D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Paynea, J.L. West, Cancer Lett. 209, 171 (2004)

    Article  Google Scholar 

  9. A.J. Haes, R.P. Van Duyne, Expert Rev. Mol. Diagn. 4, 527 (2004)

    Article  Google Scholar 

  10. J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West, N.J. Halas, Appl. Phys. Lett. 82, 257 (2003)

    Article  ADS  Google Scholar 

  11. R.A. Alvarez-Puebla, D.J. Ross, G.-A. Nazri, R.F. Aroca, Langmuir 21, 10504 (2005)

    Article  Google Scholar 

  12. E. Hao, S.Y. Li, R.C. Bailey, S.L. Zou, G.C. Schatz, J.T. Hupp, J. Phys. Chem. B 108, 1224 (2004)

    Article  Google Scholar 

  13. C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Nano Lett. 5, 1569 (2005)

    Article  ADS  Google Scholar 

  14. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  15. C. Oubre, P. Nordlander, J. Phys. Chem. B 108, 17740 (2004)

    Article  Google Scholar 

  16. C. Oubre, P. Nordlander, J. Phys. Chem. B 109, 10042 (2005)

    Article  Google Scholar 

  17. B. Willingham, D.W. Brandl, P. Nordlander, Appl. Phys. B 93, 209 (2008)

    Article  ADS  Google Scholar 

  18. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993)

    MATH  Google Scholar 

  19. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  20. J.P. Berenger, J. Comput. Phys. 114, 185 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B 16, 1824 (1999)

    Article  ADS  Google Scholar 

  22. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  23. H. Wang, G.P. Goodrich, F. Tam, C. Oubre, P. Nordlander, N.J. Halas, J. Phys. Chem. B 109, 11083 (2005)

    Article  Google Scholar 

  24. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  25. E. Prodan, C. Radloof, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  26. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Opt. Commun. 220, 137 (2003)

    Article  ADS  Google Scholar 

  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G.C. Schatz, J. Phys. Chem. B 109, 1079 (2005)

    Article  Google Scholar 

  28. P.K. Jain, W. Huang, M.A. El-Sayed, Nano Lett. 7, 2080 (2007)

    Article  ADS  Google Scholar 

  29. P.K. Jain, M.A. El-Sayed, Nano Lett. 7, 2854 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D.J., Cheng, Y. & Liu, X.J. “Hot spots” induced near-field enhancements in Au nanoshell and Au nanoshell dimer. Appl. Phys. B 97, 497–503 (2009). https://doi.org/10.1007/s00340-009-3535-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3535-7

PACS

Navigation