Skip to main content
Log in

Plasmon coupling in binary metal core–satellite assemblies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Controlled plasmon coupling is observed in nanoparticle assemblies composed of 20 nm silver ‘satellite’ nanoparticles tethered by reconfigurable duplex DNA linkers to a 50 nm gold ‘core’ particle. The assemblies incorporate silver nanoparticle–oligonucleotide conjugates prepared using a new conjugation method in which the recognition strand is anchored by a 10 base pair, double strand spacer that presents adjacent 3’- and 5’-thiols to the silver surface. Reconfiguration of the DNA linkers from a compact to an extended state results in decreased core–satellite coupling and a blue-shift in the gold core plasmon resonance. The structural basis for the observed resonance modulation is investigated through simulation of the scattering spectra of binary assemblies with various core–satellite separations. Additional simulations of core–satellite assemblies composed of gold satellite particles bound to silver cores and of assemblies composed entirely of silver particles are used to clarify the dependence of the coupling response on the composition of the components and their distribution within the assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  2. J.J. Mock, M. Barbie, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 6755 (2002)

    Article  ADS  Google Scholar 

  3. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  4. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)

    Article  ADS  Google Scholar 

  5. K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)

    Article  ADS  Google Scholar 

  6. S. Underwood, P. Mulvaney, Langmuir 10, 3427 (1994)

    Article  Google Scholar 

  7. T.R. Jensen, M.L. Duval, K.L. Kelly, A.A. Lazarides, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 103, 9846 (1999)

    Article  Google Scholar 

  8. J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 485 (2003)

    Article  ADS  Google Scholar 

  9. R. Bukasov, J.S. Shumaker-Parry, Nano Lett. 7, 1113 (2007)

    Article  ADS  Google Scholar 

  10. E.M. Larsson, J. Alegret, M. Kall, D.S. Sutherland, Nano Lett. 7, 1256 (2007)

    Article  ADS  Google Scholar 

  11. A.P. Alivisatos, K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996)

    Article  ADS  Google Scholar 

  12. I. Tokareva, E. Hutter, J. Am. Chem. Soc. 126, 15784 (2004)

    Article  Google Scholar 

  13. Z. Wang, R. Levy, D.G. Fernig, M. Brust, Bioconjugate Chem. 16, 497 (2005)

    Article  Google Scholar 

  14. S.J. Park, A.A. Lazarides, C.A. Mirkin, R.L. Letsinger, Angew. Chem. Int. Ed. 40, 2909 (2001)

    Article  Google Scholar 

  15. K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, J. Am. Chem. Soc. 125, 13914 (2003)

    Article  Google Scholar 

  16. L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J. West, Anal. Chem. 75, 2377 (2003)

    Article  Google Scholar 

  17. C.S. Yun, G.A. Khitrov, D.E. Vergona, N.O. Reich, G.F. Strouse, J. Am. Chem. Soc. 124, 7644 (2002)

    Article  Google Scholar 

  18. C. Sonnichsen, B.M. Reinhard, J. Liphardt, A.P. Alivisatos, Nat. Biotechnol. 23, 741 (2005)

    Article  Google Scholar 

  19. A.A. Lazarides, G.C. Schatz, J. Phys. Chem. B 104, 460 (2000)

    Article  Google Scholar 

  20. T. Herricks, J.Y. Chen, Y.N. Xia, Nano Lett. 4, 2367 (2004)

    Article  ADS  Google Scholar 

  21. D.B. Pedersen, S. Wang, J. Phys. Chem. C 111, 17493 (2007)

    Article  Google Scholar 

  22. B.C. Vidal, T.C. Deivaraj, J. Yang, H.P. Too, G.M. Chow, L.M. Gan, J.Y. Lee, New J. Chem. 29, 812 (2005)

    Article  Google Scholar 

  23. T.A. Taton, Current Protocols in Nucleic Acid Chemistry, 12.2.1–12.2.12 (Wiley, New York, 2002)

    Google Scholar 

  24. Y.D. Yin, Z.Y. Li, Z.Y. Zhong, B. Gates, Y.N. Xia, S. Venkateswaran, J. Mat. Chem. 12, 522 (2002)

    Article  Google Scholar 

  25. J.S. Lee, A.K.R. Lytton-Jean, S.J. Hurst, C.A. Mirkin, Nano Lett. 7, 2112 (2007)

    Article  ADS  Google Scholar 

  26. D.G. Thompson, A. Enright, K. Faulds, W.E. Smith, D. Graham, Anal. Chem. 80, 2805 (2008)

    Article  Google Scholar 

  27. J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz, J. Am. Chem. Soc. 122, 4640 (2000)

    Article  Google Scholar 

  28. D.S. Sebba, J.J. Mock, D.R. Smith, T.H. LaBean, A.A. Lazarides, Nano Lett. 8, 1803 (2008)

    Article  ADS  Google Scholar 

  29. D.W. Mackowski, J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 11, 2851 (1994)

    Article  ADS  Google Scholar 

  30. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  31. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    Google Scholar 

  32. W.A. Kraus, G.C. Schatz, J. Chem. Phys. 79, 6130 (1983)

    Article  ADS  Google Scholar 

  33. V.A. Bloomfield, D.M. Crothers, I. Tinoco Jr., Nucleic Acids: Structures, Properties, and Functions (University Science Books, Sausalito, 2000)

    Google Scholar 

  34. S.J. Park, A.A. Lazarides, J.J. Storhoff, L. Pesce, C.A. Mirkin, Phys. Chem. B 108, 12375 (2004)

    Article  Google Scholar 

  35. H.D. Hill, R.J. Macfarlane, A.J. Senesi, B. Lee, S.Y. Park, C.A. Mirkin, Nano Lett. 8, 2341 (2008)

    Article  ADS  Google Scholar 

  36. C.D. Keating, K.K. Kovaleski, M.J. Natan, Phys. Chem. B 102, 9414 (1998)

    Article  Google Scholar 

  37. A.M. Kalsin, B. Kowalczyk, S.K. Smoukov, R. Klajn, B.A. Grzybowski, J. Am. Chem. Soc. 128, 15046 (2006)

    Article  Google Scholar 

  38. B.M. Reinhard, M. Siu, H. Agarwal, A.P. Alivisatos, J. Liphardt, Nano Lett. 5, 2246 (2005)

    Article  ADS  Google Scholar 

  39. P. Mulvaney, M. Giersig, A. Henglein, J. Phys. Chem. 97, 7061 (1993)

    Article  Google Scholar 

  40. P. Mulvaney, M. Giersig, A. Henglein, J. Phys. Chem. 97, 7061 (1993)

    Article  Google Scholar 

  41. C.D. Keating, K.M. Kovaleski, M.J. Natan, J. Phys. Chem. B 102, 9404 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lazarides.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebba, D.S., LaBean, T.H. & Lazarides, A.A. Plasmon coupling in binary metal core–satellite assemblies. Appl. Phys. B 93, 69–78 (2008). https://doi.org/10.1007/s00340-008-3212-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3212-2

PACS

Navigation