Skip to main content
Log in

Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A two-wavelength, mid-IR optical absorption diagnostic is developed for simultaneous temperature and n-dodecane vapor concentration measurements in an aerosol-laden shock tube. FTIR absorption spectra for the temperature range 323 to 773 K are used to select the two wavelengths (3409.0 and 3432.4 nm). Shock-heated mixtures of n-dodecane vapor in argon are then used to extend absorption cross section data at these wavelengths to 1322 K. The sensor is used to validate a model of the post-evaporation temperature and pressure of shock-heated fuel aerosol, which can ultimately be used for the study of the chemistry of low-vapor-pressure compounds and fuel blends. The signal-to-noise ratio of the temperature and concentration are ∼20 and ∼30, respectively, illustrating the sensitivity of this diagnostic. The good agreement between model and measurement provide confidence in the use of this aerosol shock tube to provide well-known thermodynamic conditions. At high temperatures, pseudo-first-order decomposition rates are extracted from time-resolved concentration measurements, and data from vapor and aerosol shocks are found to be in good agreement. Notably, the n-dodecane concentration measurements exhibit slower decomposition than predicted by models using two published reaction mechanisms, illustrating the need for further kinetic studies of this hydrocarbon. These results demonstrate the potential of multi-wavelength mid-IR laser sensors for hydrocarbon measurements in environments with time-varying temperature and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  2. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, 1988)

    Google Scholar 

  3. J.B. Jeffries, K. Kohse-Hoinghaus, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)

    Google Scholar 

  4. C.M. Brophy, R.K. Hanson, J. Propuls. Power 22, 1155 (2006)

    Article  Google Scholar 

  5. J.F. Griffiths, B.J. Whitaker, Combust. Flame 131, 386 (2002)

    Article  Google Scholar 

  6. A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, T. Itoh, E. Tomita, in 2004 SAE Fuels & Lubricants Meeting & Exhibition (Toulouse, France) 2004-01-1946 (2004)

  7. G.B. Rieker, H. Li, X. Liu, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mulhall, H.S. Kindle, A. Kakuho, K.R. Sholes, T. Matsuura, S. Takatani, Proc. Combust. Inst. 31, 3041 (2007)

    Article  Google Scholar 

  8. L. Ma, S.T. Sanders, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 29, 161 (2003)

    Article  Google Scholar 

  9. D.W. Mattison, J.B. Jeffries, R.K. Hanson, R.R. Steeper, S. De Zilwa, J.E. Dec, M. Sjoberg, W. Hwang, Proc. Combust. Inst. 31, 791 (2007)

    Article  Google Scholar 

  10. A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008)

    Article  ADS  Google Scholar 

  11. E. Tomita, N. Kawahara, A. Nishiyama, M. Shigenaga, Meas. Sci. Technol. 14, 1357 (2003)

    Article  ADS  Google Scholar 

  12. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, AIAA J. 45, 4 (2007)

    Article  Google Scholar 

  13. M.J. Hall, M. Koenig, Proc. Combust. Inst. 26, 2613 (1996)

    Google Scholar 

  14. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 31, 807 (2007)

    Article  Google Scholar 

  15. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration. Proc. Combust. Inst. 32 (2009, in press)

  16. J. Kashdan, T.C. Hanson, E. Piper, D.F. Davidson, R.K. Hanson, in 42nd Aerospace Meeting (Reno, NV), AIAA-2004-0468 (2004)

  17. T.C. Hanson, D.F. Davidson, R.K. Hanson, Phys. Fluids 19(5), 056104 (2007)

    Article  ADS  Google Scholar 

  18. D.F. Davidson, D.R. Haylett, R.K. Hanson, Development of an aerosol shock tube for kinetic studies of low-vapo-pressure fuels. Combust. Flame (2008, in press)

  19. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, J. Quant. Spec. Rad. Trans. 107(3), 407 (2007)

    Article  ADS  Google Scholar 

  20. X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)

    Article  ADS  Google Scholar 

  21. E.A. Barbour, R.K. Hanson, P. Hutcheson, C.M. Brophy, J.O. Sinibaldi, in 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), AIAA-2007-232 (2007)

  22. J.J. Scherer, Laser Focus World 43, 103–106 (2007)

    Google Scholar 

  23. W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M.W. Sigrist, F.K. Tittel, Comptes Rendus 8, 1129–1150 (2007)

    Article  Google Scholar 

  24. D. Richter, P. Weibring, Appl. Phys. B 82, 479 (2006)

    Article  ADS  Google Scholar 

  25. G. Emanuel, Shock waves in gases, in Handbook of Shock Waves, ed. by G. Ben-Dor, O. Igra, T. Elperin. Theoretical, vol. 1 (Academic Press, San Diego, 2001)

    Chapter  Google Scholar 

  26. S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spec. 58, 1452 (2004)

    Article  ADS  Google Scholar 

  27. H.R. Zhang, E.G. Eddings, A.F. Sarofim, Proc. Combust. Inst. 31, 401 (2007)

    Article  Google Scholar 

  28. H.R. Zhang, Ph.D. Dissertation, Department of Chemical Engineering, University of Utah, Salt Lake City, UT, May, 2005

  29. E. Ranzi, A. Frassoldati, S. Granata, T. Faravelli, Ind. Eng. Chem. Res. 44, 5170 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Jeffries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingbeil, A.E., Jeffries, J.B., Davidson, D.F. et al. Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube. Appl. Phys. B 93, 627–638 (2008). https://doi.org/10.1007/s00340-008-3190-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3190-4

PACS

Navigation