Skip to main content
Log in

Influence of ethylene spectral lines on methane concentration measurements with a diode laser methane sensor in the 1.65 μm region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Spectra measurements around 1.65 μm have revealed that spectral lines of ethylene are present in this range along with methane spectral lines. Furthermore, the HITRAN database has no parameters of these ethylene lines. In particular, it was found that several ethylene absorption lines are located near the methane feature often used for quantitative spectroscopy (R3 triplet of the 2ν3 band). Ethylene can be present together with methane in the samples under study, perturbing the recorded spectrum of CH4. This perturbation by an interfering species can produce systematic errors in the derived CH4 concentration.

We have found in this work by numerical modelling that when measuring the methane concentration by a diode laser methane sensor operating in the 6046–6048 cm-1 range, the systematic error on the retrieved CH4 concentration decreases, as a rule, when decreasing the width of the fitted spectral window. At equal concentrations of ethylene and methane in the sample under study, the error on the concentration of CH4 determined by the correlation technique can reach 15%. When using the technique based on the 2nd or 3rd derivative of the spectrum, interfering or impurity lines induce a systematic error on the derived CH4 concentration, which is less than 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.M. Bazhin, Khim. Interesakh Ustoichivogo Razvitiya 1, 381 (1993)

    Google Scholar 

  2. http://gaw.kishou.go.jp/wdcgg/product

  3. Methane detector. Technical Specification (Institute of General Physics RAS, Moscow, 1999)

  4. A. Nadezhdinskii, A. Berezin, S. Chernin, O. Ershov, V. Kutnyak, Spectrochim. Acta A 55, 2083 (1999)

    Article  Google Scholar 

  5. A.G. Berezin, O.V. Ershov, A.I. Nadezhdinskii, Y.P. Shapovalov, in Abstracts of Reports at XIV Symposium on High Resolution Molecular Spectroscopy (IAO SB RAS, Tomsk, 2003), p. 107

  6. A.V. Gladyshev, M.I. Belovolov, S.A. Vasiliev, E.M. Dianov, O.I. Medvedkov, A.I. Nadezhdinskii, O.V. Ershov, A.G. Beresin, V.P. Duraev, E.T. Nedelin, Spectrochim. Acta A 60, 3337 (2004)

    Article  Google Scholar 

  7. A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, M. Scotoni, Appl. Phys. B 74, 273 (2002)

    Article  ADS  Google Scholar 

  8. J.-P. Besson, S. Schilt, L. Thevenaz, Spectrochim. Acta A 60, 3449 (2004)

    Article  Google Scholar 

  9. V. Zeninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Infrared Phys. Technol. 44, 253 (2003)

    Article  ADS  Google Scholar 

  10. A. Grossel, V. Zeninari, L. Joly, B. Parvitte, D. Courtois, G. Durry, Spectrochim. Acta A 63, 1021 (2006)

    Article  Google Scholar 

  11. B.L. Fawcett, A.M. Parkes, D.E. Shallcross, A.J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002)

    Article  Google Scholar 

  12. C. Fischer, M. Sigrist, in Conference on Lasers and Electro-Optics, CLEO’03 (Baltimore, 2003), p. 472

  13. A.K.Y. Ngai, S.T. Persijn, G. Von Basum, F.J.M. Harren, Appl. Phys. B 85, 173 (2006)

    Article  ADS  Google Scholar 

  14. M. Triki, M. Chenevier, N. Sadeghi, D. Romanini, Abstracts of Papers on 6th International Conference on Tunable Diode Laser Spectroscopy (Shampagne-Ardenne Universite, Reims, 2007), p. 55

  15. V.A. Kapitanov, Y.N. Ponomarev, I.S. Tyryshkin, Abstract of Reports at XV Symposium on High Resolution Molecular Spectroscopy (IAO SB RAS, Tomsk, 2006), p. 114

  16. V.A. Kapitanov, I.S. Tyryshkin, N.P. Krivolutskii, Y.N. Ponomarev, M. De Batist, R.Y. Gnatovsky, Spectrochim. Acta A 66, 788 (2007)

    Article  Google Scholar 

  17. V.A. Kapitanov, Y.N. Ponomarev, Atmos. Oceanic Opt. 19, 354 (2006)

    Google Scholar 

  18. B.G. Ageev, V.A. Kapitanov, Y.N. Ponomarev, V.A. Sapozhnikova, Atmos. Oceanic Opt. 20, 726 (2007)

    Google Scholar 

  19. W.C. Kuster, F.J.M. Harren, J. de Gouw, Environ. Sci. Technol. 39, 4581 (2005)

    Article  Google Scholar 

  20. Assessment Report on Ethylene for Developing Ambient Air Quality Objectives (Alberta Environment 2003)

  21. A.M. Parkes, R.E. Lindley, A.J. Orr-Ewing, Phys. Chem. Chem. Phys. 6, 5313 (2004)

    Article  Google Scholar 

  22. V.A. Kapitanov, Y.N. Ponomarev, I.S. Tyryshkin, A.P. Rostov, Spectrochim. Acta A 66, 811 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.N. Ponomarev.

Additional information

PACS

07.07.Df; 07.88.+y; 42.62.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiforova, O., Kapitanov, V. & Ponomarev, Y. Influence of ethylene spectral lines on methane concentration measurements with a diode laser methane sensor in the 1.65 μm region. Appl. Phys. B 90, 263–268 (2008). https://doi.org/10.1007/s00340-007-2919-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2919-9

Keywords

Navigation