Skip to main content
Log in

Er3+-doped sol–gel SnO2 for optical laser and amplifier applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Erbium-doped tin dioxide (SnO2:Er3+) was obtained by the sol–gel method. Spectroscopic properties of the SnO2:Er3+ are analyzed from the Judd–Ofelt (JO) theory. The JO model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd–Ofelt intensity parameters: Ω2, Ω4, and Ω6. With the weak spectroscopic quality factors Ω46, we expect a relatively prominent infrared laser emission. The intensity parameters are used to determine the spontaneous emission probabilities of some relevant transitions, the branching ratios, and the radiative lifetimes of several excited states of Er3+. The emission cross section (1.31×10-20 cm2) is evaluated at 1.54 μm and was found to be relatively high compared to that of erbium in other systems. Efficient green and red up-conversion luminescence were observed, at room temperature, using a 798-nm excitation wavelength. The green up-conversion emission is mainly due to the excited state absorption from 4 I 11/2, which populates the 4 F 3/2,5/2 states. The red up-conversion emission is due to the energy transfer process described by Er3+ (4I13/2)+Er3+(4I11/2)→Er3+(4F9/2)+Er3+ (4 I 15/2) and the cross-relaxation process. The efficient visible up-conversion and infrared luminescence indicate that Er3+-doped sol–gel SnO2 is a promising laser and amplifier material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.D. Huang, M. Mortier, F. Auzel, Opt. Mater. 17, 501 (2001)

    Article  Google Scholar 

  2. T.Y. Ivanova, A.A. Man’shina, A.V. Kurochkin, Y.S. Tver’yanovich, V.B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002)

    Article  Google Scholar 

  3. J.H. Yang, S.X. Dai, Y.F. Zhou, L. Wen, L.L. Hu, Z.H. Jiang, J. Appl. Phys. 93, 977 (2003)

    Article  ADS  Google Scholar 

  4. H. Lin, K. Liu, E.Y.B. Pun, T.C. Ma, X. Peng, Q.D. An, J.Y. Yu, S.B. Jiang, Chem. Phys. Lett. 398, 146 (2004)

    Article  Google Scholar 

  5. J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, Z. Jiang, J. Luminesc. 106, 9 (2004)

    Article  Google Scholar 

  6. N. Rakov, F.E. Romas, G. Hirata, M. Xiao, Appl. Phys. Lett. 83, 272 (2003),

    Article  ADS  Google Scholar 

  7. N. Chiodini, A. Palearia, G. Brambilla, E.R. Taylor, Appl. Phys. Lett. 80, 4449 (2002)

    Article  ADS  Google Scholar 

  8. Y. Chen, Y. Huang, Z. Luo, Chem. Phys. Lett. 382, 481 (2003)

    Article  Google Scholar 

  9. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  ADS  Google Scholar 

  10. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  ADS  Google Scholar 

  11. J.P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan, J.A. Roger, Thin Solid Films 247, 162 (1994)

    Article  Google Scholar 

  12. C.W. Nielson, G.F. Koster, Spectroscopic Coefficients for pn, dn and fn Configurations (MIT Press, Cambridge, MA, 1964), pp. 53–63

    Google Scholar 

  13. W.T. Carnall, P.R. Fields, R. Rajnak, J. Chem. Phys. 49, 4424 (1968)

    Article  ADS  Google Scholar 

  14. K. Driesen, C. Görller-Walrand, K. Binnemans, Mater. Sci. Eng. C 18, 255 (2001)

    Article  Google Scholar 

  15. R.R. Jacobs, M.J. Weber, IEEE J. Quantum Electron. QE-12, 102 (1976)

    Article  ADS  Google Scholar 

  16. H. Lin, K. Liu, E.Y.B. Pun, T.C. Ma, X. Peng, Q.D. An, J.Y. Yu, S.B. Jiang, Chem. Phys. Lett. 398, 146 (2004)

    Article  Google Scholar 

  17. G.A. Kumar, E. De la Rosa, H. Desirena, Opt. Commun. 260, 601 (2006)

    Article  ADS  Google Scholar 

  18. H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian, E. Pun, J. Phys. D Appl. Phys. 36, 812 (2003)

    Article  ADS  Google Scholar 

  19. M.J. Weber, Phys. Rev. 157, 262 (1967)

    Article  ADS  Google Scholar 

  20. H. Elhouichet, S. Daboussi, H. Ajlani, A. Najar, A. Moadhen, M. Oueslati, I.M. Tiginyanu, S. Langa, H. Föll, J. Luminesc. 113, 329 (2005)

    Article  Google Scholar 

  21. S. Dabboussi, H. Elhouichet, H. Ajlani, A. Moadhen, M. Oueslati, J.A. Roger, J. Luminesc. 121, 507 (2006)

    Article  Google Scholar 

  22. A.A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, Berlin, 1981)

    Google Scholar 

  23. N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, H. Maaref, J. Phys.: Condens. Matter 12, 4523 (2000)

    Article  ADS  Google Scholar 

  24. A.M. Tkachuk, S.E. Ivanovab, M.-F. Joubertc, Y. Guyotc, L.I. Isaenkod, V.P. Gapontseve, J. Luminesc. 125, 271 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moadhen.

Additional information

PACS

71.20.Eh; 74.25.Gz; 78.55.-m

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzidi, C., Moadhen, A., Elhouichet, H. et al. Er3+-doped sol–gel SnO2 for optical laser and amplifier applications. Appl. Phys. B 90, 465–469 (2008). https://doi.org/10.1007/s00340-007-2913-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2913-2

Keywords

Navigation