Skip to main content
Log in

A freely falling magneto-optical trap drop tower experiment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We experimentally demonstrate the possibility of preparing ultracold atoms in the environment of weightlessness at the earth-bound short-term microgravity laboratory Drop Tower Bremen, a facility of ZARM – University of Bremen. Our approach is based on a freely falling magneto-optical trap (MOT) drop tower experiment performed within the ATKAT collaboration (“Atom-Catapult”) as a preliminary part of the QUANTUS pilot project (“Quantum Systems in Weightlessness”) pursuing a Bose–Einstein condensate (BEC) in microgravity at the drop tower [1, 2].

Furthermore we give a complete account of the specific drop tower requirements to realize a compact and robust setup for trapping and cooling neutral rubidium 87Rb atoms in microgravity conditions. We also present the results of the first realized freely falling MOT and further accomplished experiments during several drops.

The goal of the preliminary ATKAT pilot project is to initiate a basis for extended atom-optical experiments which aim at realizing, observing and investigating ultracold quantum matter in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vogel, M. Schmidt, K. Sengstock, K. Bongs, W. Lewoczko, T. Schuldt, A. Peters, T. van Zoest, W. Ertmer, E.M. Rasel, T. Steinmetz, J. Reichel, T. Könemann, W. Brinkmann, E. Göklü, C. Lämmerzahl, H. Dittus, G. Nandi, R. Walser, W.P. Schleich, Appl. Phys. B 84, 663 (2006)

    Article  ADS  Google Scholar 

  2. G. Nandi, R. Walser, E. Kajari, W.P. Schleich, arXiv:cond-mat/0610637v1 (2006)

  3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  4. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. P. Laurent, P. Lemonde, E. Simon, G. Santorelli, A. Clairon, N. Dimarcq, P. Petit, C. Audoin, C. Salomon, Eur. Phys. J. D 3, 201 (1998)

    ADS  Google Scholar 

  6. S.R. Jefferts, T.P. Heavner, L.W. Hollberg, J. Kitching, D.M. Meekhof, T.E. Parker, W. Phillips, S. Rolston, H.G. Robinson, J.H. Shirley, D.B. Sullivan, F.L. Walls, N. Ashby, W.M. Klipstein, L. Maleki, D. Seidel, R. Thompson, S. Wu, L. Young, R.F.C. Vessot, A. De Marchi, Joint Meet. Eur. Freq. Time Forum and The IEEE Int. Freq. Contr. Symp., Besançon, France, April (1999), pp. 141–144

  7. C. Fertig, K. Gibble, IEEE/EIA Int. Freq. Contr. Symp., Kansas City, MO, June (2000), pp. 676–679

  8. G. Varoquaux, N. Zahzam, W. Chaibi, J. Clément, O. Carraz, J. Brantut, R.A. Nyman, F.P. Dos Santos, L. Mondin, M. Rouzé, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, arXiv:0705.2922v2 (2007)

  9. B. Lounis, J. Reichel, C. Salomon, CR Acad. Sci. 316, 739 (1993)

    Google Scholar 

  10. H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, Berlin Heidelberg New York, 1999)

    Google Scholar 

  11. J.E. Caroll, J.E.A. Whiteaway, R.G.S. Plumb, D. Plumb, Distributed Feedback Semiconductor Lasers (IEE, Redwood Books, Trowbridge, NJ, 1998)

    Google Scholar 

  12. G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613 (2002)

    Article  ADS  Google Scholar 

  13. J.H. Shirley, Opt. Lett. 7, 537 (1982)

    Article  ADS  Google Scholar 

  14. J. Zhang, D. Wei, C. Xie, K. Peng, Opt. Express 11, 1338 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Könemann.

Additional information

PACS

67.85.-d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Könemann, T., Brinkmann, W., Göklü, E. et al. A freely falling magneto-optical trap drop tower experiment. Appl. Phys. B 89, 431–438 (2007). https://doi.org/10.1007/s00340-007-2863-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2863-8

Keywords

Navigation